
How to Develop a Word Embedding Model for
Predicting Movie Review Sentiment

by Jason Brownlee in Deep Learning for Natural Language Processing

Develop a Deep Learning Model to Automatically Classify Movie Reviews

as Positive or Negative in Python with Keras, Step-by-Step.

Word embeddings are a technique for representing text where different words with similar

meaning have a similar real-valued vector representation.

They are a key breakthrough that has led to great performance of neural network models on

a suite of challenging natural language processing problems.

In this tutorial, you will discover how to develop word embedding models for neural

networks to classify movie reviews.

After completing this tutorial, you will know:

• How to prepare movie review text data for classification with deep learning methods.

• How to learn a word embedding as part of fitting a deep learning model.

• How to learn a standalone word embedding and how to use a pre-trained embedding in a neural

network model.

Let’s get started.

Note: This is an excerpt from: “Deep Learning for Natural Language Processing“.

Take a look, if you want more step-by-step tutorials on getting the most out of deep learning

methods when working with text data.

https://machinelearningmastery.com/author/jasonb/
https://machinelearningmastery.com/category/natural-language-processing/
https://machinelearningmastery.com/deep-learning-for-nlp/

How to Develop a Word Embedding Model for Predicting Movie Review Sentiment

Photo by Katrina Br*?#*!@nd, some rights reserved.

Tutorial Overview

This tutorial is divided into 5 parts; they are:

1. Movie Review Dataset

2. Data Preparation

3. Train Embedding Layer

4. Train word2vec Embedding

5. Use Pre-trained Embedding

Python Environment

This tutorial assumes you have a Python SciPy environment installed, ideally with Python 3.

https://www.flickr.com/photos/fuzzyblue/6351564408/

You must have Keras (2.2 or higher) installed with either the TensorFlow or Theano

backend.

The tutorial also assumes you have scikit-learn, Pandas, NumPy, and Matplotlib installed.

If you need help with your environment, see this tutorial:

• How to Setup a Python Environment for Machine Learning and Deep Learning with Anaconda

A GPU is not required for this tutorial, nevertheless, you can access GPUs cheaply on

Amazon Web Services. Learn how in this tutorial:

• How to Setup Amazon AWS EC2 GPUs to Train Keras Deep Learning Models (step-by-step)

Let’s dive in.

1. Movie Review Dataset

The Movie Review Data is a collection of movie reviews retrieved from the imdb.com

website in the early 2000s by Bo Pang and Lillian Lee. The reviews were collected and

made available as part of their research on natural language processing.

The reviews were originally released in 2002, but an updated and cleaned up version were

released in 2004, referred to as “v2.0”.

The dataset is comprised of 1,000 positive and 1,000 negative movie reviews drawn from

an archive of the rec.arts.movies.reviews newsgroup hosted at imdb.com. The authors refer

to this dataset as the “polarity dataset.”

Our data contains 1000 positive and 1000 negative reviews all written before 2002, with a

cap of 20 reviews per author (312 authors total) per category. We refer to this corpus as the

polarity dataset.

— A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based

on Minimum Cuts, 2004.

The data has been cleaned up somewhat, for example:

• The dataset is comprised of only English reviews.

• All text has been converted to lowercase.

• There is white space around punctuation like periods, commas, and brackets.

• Text has been split into one sentence per line.

https://machinelearningmastery.com/setup-python-environment-machine-learning-deep-learning-anaconda/
https://machinelearningmastery.com/develop-evaluate-large-deep-learning-models-keras-amazon-web-services/
http://reviews.imdb.com/Reviews
http://xxx.lanl.gov/abs/cs/0409058
http://xxx.lanl.gov/abs/cs/0409058

The data has been used for a few related natural language processing tasks. For

classification, the performance of machine learning models (such as Support Vector

Machines) on the data is in the range of high 70% to low 80% (e.g. 78%-82%).

More sophisticated data preparation may see results as high as 86% with 10-fold cross

validation. This gives us a ballpark of low-to-mid 80s if we were looking to use this dataset

in experiments of modern methods.

… depending on choice of downstream polarity classifier, we can achieve highly statistically

significant improvement (from 82.8% to 86.4%)

— A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based

on Minimum Cuts, 2004.

You can download the dataset from here:

• Movie Review Polarity Dataset (review_polarity.tar.gz, 3MB)

After unzipping the file, you will have a directory called “txt_sentoken” with two sub-

directories containing the text “neg” and “pos” for negative and positive reviews. Reviews

are stored one per file with a naming convention cv000 to cv999 for each neg and pos.

Next, let’s look at loading and preparing the text data.

2. Data Preparation

In this section, we will look at 3 things:

1. Separation of data into training and test sets.

2. Loading and cleaning the data to remove punctuation and numbers.

3. Defining a vocabulary of preferred words.

Split into Train and Test Sets

We are pretending that we are developing a system that can predict the sentiment of a

textual movie review as either positive or negative.

This means that after the model is developed, we will need to make predictions on new

textual reviews. This will require all of the same data preparation to be performed on those

new reviews as is performed on the training data for the model.

We will ensure that this constraint is built into the evaluation of our models by splitting the

training and test datasets prior to any data preparation. This means that any knowledge in

http://xxx.lanl.gov/abs/cs/0409058
http://xxx.lanl.gov/abs/cs/0409058
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz

the data in the test set that could help us better prepare the data (e.g. the words used) are

unavailable in the preparation of data used for training the model.

That being said, we will use the last 100 positive reviews and the last 100 negative reviews

as a test set (100 reviews) and the remaining 1,800 reviews as the training dataset.

This is a 90% train, 10% split of the data.

The split can be imposed easily by using the filenames of the reviews where reviews named

000 to 899 are for training data and reviews named 900 onwards are for test.

Loading and Cleaning Reviews

The text data is already pretty clean; not much preparation is required.

If you are new to cleaning text data, see this post:

• How to Clean Text for Machine Learning with Python

Without getting bogged down too much in the details, we will prepare the data using the

following way:

• Split tokens on white space.

• Remove all punctuation from words.

• Remove all words that are not purely comprised of alphabetical characters.

• Remove all words that are known stop words.

• Remove all words that have a length <= 1 character.

We can put all of these steps into a function called clean_doc() that takes as an argument

the raw text loaded from a file and returns a list of cleaned tokens. We can also define a

function load_doc() that loads a document from file ready for use with

the clean_doc() function.
An example of cleaning the first positive review is listed below.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

from nltk.corpus import stopwords
import string

load doc into memory
def load_doc(filename):
 # open the file as read only
 file = open(filename, 'r')
 # read all text
 text = file.read()
 # close the file
 file.close()
 return text

turn a doc into clean tokens

https://machinelearningmastery.com/clean-text-machine-learning-python/

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

def clean_doc(doc):
 # split into tokens by white space
 tokens = doc.split()
 # remove punctuation from each token
 table = str.maketrans('', '', string.punctuation)
 tokens = [w.translate(table) for w in tokens]
 # remove remaining tokens that are not alphabetic
 tokens = [word for word in tokens if word.isalpha()]
 # filter out stop words
 stop_words = set(stopwords.words('english'))
 tokens = [w for w in tokens if not w in stop_words]
 # filter out short tokens
 tokens = [word for word in tokens if len(word) > 1]
 return tokens

load the document
filename = 'txt_sentoken/pos/cv000_29590.txt'
text = load_doc(filename)
tokens = clean_doc(text)
print(tokens)

Running the example prints a long list of clean tokens.

There are many more cleaning steps we may want to explore and I leave them as further

exercises.

I’d love to see what you can come up with.
Post your approaches and findings in the comments at the end.

1
2

...
'creepy', 'place', 'even', 'acting', 'hell', 'solid', 'dreamy', 'depp', 'turning', 'typically', 'strong', 'performance', 'deftly',
'handling', 'british', 'accent', 'ians', 'holm', 'joe', 'goulds', 'secret', 'richardson', 'dalmatians', 'log', 'great', 'supporting',
'roles', 'big', 'surprise', 'graham', 'cringed', 'first', 'time', 'opened', 'mouth', 'imagining', 'attempt', 'irish', 'accent',
'actually', 'wasnt', 'half', 'bad', 'film', 'however', 'good', 'strong', 'violencegore', 'sexuality', 'language', 'drug', 'content']

Define a Vocabulary

It is important to define a vocabulary of known words when using a bag-of-words or

embedding model.

The more words, the larger the representation of documents, therefore it is important to

constrain the words to only those believed to be predictive. This is difficult to know

beforehand and often it is important to test different hypotheses about how to construct a

useful vocabulary.

We have already seen how we can remove punctuation and numbers from the vocabulary

in the previous section. We can repeat this for all documents and build a set of all known

words.

We can develop a vocabulary as a Counter, which is a dictionary mapping of words and

their counts that allow us to easily update and query.

Each document can be added to the counter (a new function called add_doc_to_vocab())

and we can step over all of the reviews in the negative directory and then the positive

directory (a new function called process_docs()).
The complete example is listed below.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

from string import punctuation
from os import listdir
from collections import Counter
from nltk.corpus import stopwords

load doc into memory
def load_doc(filename):
 # open the file as read only
 file = open(filename, 'r')
 # read all text
 text = file.read()
 # close the file
 file.close()
 return text

turn a doc into clean tokens
def clean_doc(doc):
 # split into tokens by white space
 tokens = doc.split()
 # remove punctuation from each token
 table = str.maketrans('', '', punctuation)
 tokens = [w.translate(table) for w in tokens]
 # remove remaining tokens that are not alphabetic
 tokens = [word for word in tokens if word.isalpha()]
 # filter out stop words
 stop_words = set(stopwords.words('english'))
 tokens = [w for w in tokens if not w in stop_words]
 # filter out short tokens
 tokens = [word for word in tokens if len(word) > 1]
 return tokens

load doc and add to vocab
def add_doc_to_vocab(filename, vocab):
 # load doc
 doc = load_doc(filename)
 # clean doc
 tokens = clean_doc(doc)
 # update counts
 vocab.update(tokens)

load all docs in a directory
def process_docs(directory, vocab, is_trian):
 # walk through all files in the folder
 for filename in listdir(directory):
 # skip any reviews in the test set
 if is_trian and filename.startswith('cv9'):
 continue
 if not is_trian and not filename.startswith('cv9'):
 continue

50
51
52
53
54
55
56
57
58
59
60
61
62
63

 # create the full path of the file to open
 path = directory + '/' + filename
 # add doc to vocab
 add_doc_to_vocab(path, vocab)

define vocab
vocab = Counter()
add all docs to vocab
process_docs('txt_sentoken/neg', vocab, True)
process_docs('txt_sentoken/pos', vocab, True)
print the size of the vocab
print(len(vocab))
print the top words in the vocab
print(vocab.most_common(50))

Running the example shows that we have a vocabulary of 44,276 words.

We also can see a sample of the top 50 most used words in the movie reviews.

Note, that this vocabulary was constructed based on only those reviews in the training
dataset.

1
2

44276
[('film', 7983), ('one', 4946), ('movie', 4826), ('like', 3201), ('even', 2262), ('good', 2080), ('time', 2041), ('story', 1907),
('films', 1873), ('would', 1844), ('much', 1824), ('also', 1757), ('characters', 1735), ('get', 1724), ('character', 1703),
('two', 1643), ('first', 1588), ('see', 1557), ('way', 1515), ('well', 1511), ('make', 1418), ('really', 1407), ('little', 1351),
('life', 1334), ('plot', 1288), ('people', 1269), ('could', 1248), ('bad', 1248), ('scene', 1241), ('movies', 1238), ('never',
1201), ('best', 1179), ('new', 1140), ('scenes', 1135), ('man', 1131), ('many', 1130), ('doesnt', 1118), ('know', 1092),
('dont', 1086), ('hes', 1024), ('great', 1014), ('another', 992), ('action', 985), ('love', 977), ('us', 967), ('go', 952),
('director', 948), ('end', 946), ('something', 945), ('still', 936)]

We can step through the vocabulary and remove all words that have a low occurrence, such

as only being used once or twice in all reviews.

For example, the following snippet will retrieve only the tokens that of appears 2 or more
times in all reviews.

1
2
3
4

keep tokens with a min occurrence
min_occurane = 2
tokens = [k for k,c in vocab.items() if c >= min_occurane]
print(len(tokens))

Running the above example with this addition shows that the vocabulary size drops by a
little more than half its size from 44,276 to 25,767 words.

1 25767

Finally, the vocabulary can be saved to a new file called vocab.txt that we can later load and

use to filter movie reviews prior to encoding them for modeling. We define a new function

called save_list() that saves the vocabulary to file, with one word per file.
For example:

1
2
3
4

save list to file
def save_list(lines, filename):
 # convert lines to a single blob of text
 data = '\n'.join(lines)

5
6
7
8
9

10
11
12
13

 # open file
 file = open(filename, 'w')
 # write text
 file.write(data)
 # close file
 file.close()

save tokens to a vocabulary file
save_list(tokens, 'vocab.txt')

Running the min occurrence filter on the vocabulary and saving it to file, you should now

have a new file called vocab.txt with only the words we are interested in.
The order of words in your file will differ, but should look something like the following:

1
2
3
4
5
6
7
8
9

10
11

aberdeen
dupe
burt
libido
hamlet
arlene
available
corners
web
columbia
...

We are now ready to look at learning features from the reviews.

3. Train Embedding Layer

In this section, we will learn a word embedding while training a neural network on the

classification problem.

A word embedding is a way of representing text where each word in the vocabulary is

represented by a real valued vector in a high-dimensional space. The vectors are learned in

such a way that words that have similar meanings will have similar representation in the

vector space (close in the vector space). This is a more expressive representation for text

than more classical methods like bag-of-words, where relationships between words or

tokens are ignored, or forced in bigram and trigram approaches.

The real valued vector representation for words can be learned while training the neural

network. We can do this in the Keras deep learning library using the Embedding layer.

If you are new to word embeddings, see the post:

• What Are Word Embeddings for Text?

If you are new to word embedding layers in Keras, see the post:

• How to Use Word Embedding Layers for Deep Learning with Keras

https://keras.io/layers/embeddings/
https://machinelearningmastery.com/what-are-word-embeddings/
https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/

The first step is to load the vocabulary. We will use it to filter out words from movie reviews

that we are not interested in.

If you have worked through the previous section, you should have a local file called
‘vocab.txt‘ with one word per line. We can load that file and build a vocabulary as a set for
checking the validity of tokens.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

load doc into memory
def load_doc(filename):
 # open the file as read only
 file = open(filename, 'r')
 # read all text
 text = file.read()
 # close the file
 file.close()
 return text

load the vocabulary
vocab_filename = 'vocab.txt'
vocab = load_doc(vocab_filename)
vocab = vocab.split()
vocab = set(vocab)

Next, we need to load all of the training data movie reviews. For that we can adapt

the process_docs() from the previous section to load the documents, clean them, and return

them as a list of strings, with one document per string. We want each document to be a

string for easy encoding as a sequence of integers later.

Cleaning the document involves splitting each review based on white space, removing

punctuation, and then filtering out all tokens not in the vocabulary.

The updated clean_doc() function is listed below.

1
2
3
4
5
6
7
8
9

10
11

turn a doc into clean tokens
def clean_doc(doc, vocab):
 # split into tokens by white space
 tokens = doc.split()
 # remove punctuation from each token
 table = str.maketrans('', '', punctuation)
 tokens = [w.translate(table) for w in tokens]
 # filter out tokens not in vocab
 tokens = [w for w in tokens if w in vocab]
 tokens = ' '.join(tokens)
 return tokens

The updated process_docs() can then call the clean_doc() for each document on the ‘pos‘
and ‘neg‘ directories that are in our training dataset.

1
2
3
4
5
6
7

load all docs in a directory
def process_docs(directory, vocab, is_trian):
 documents = list()
 # walk through all files in the folder
 for filename in listdir(directory):
 # skip any reviews in the test set
 if is_trian and filename.startswith('cv9'):

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

 continue
 if not is_trian and not filename.startswith('cv9'):
 continue
 # create the full path of the file to open
 path = directory + '/' + filename
 # load the doc
 doc = load_doc(path)
 # clean doc
 tokens = clean_doc(doc, vocab)
 # add to list
 documents.append(tokens)
 return documents

load all training reviews
positive_docs = process_docs('txt_sentoken/pos', vocab, True)
negative_docs = process_docs('txt_sentoken/neg', vocab, True)
train_docs = negative_docs + positive_docs

The next step is to encode each document as a sequence of integers.

The Keras Embedding layer requires integer inputs where each integer maps to a single

token that has a specific real-valued vector representation within the embedding. These

vectors are random at the beginning of training, but during training become meaningful to

the network.

We can encode the training documents as sequences of integers using the Tokenizer class

in the Keras API.
First, we must construct an instance of the class then train it on all documents in the training
dataset. In this case, it develops a vocabulary of all tokens in the training dataset and
develops a consistent mapping from words in the vocabulary to unique integers. We could
just as easily develop this mapping ourselves using our vocabulary file.

1
2
3
4

create the tokenizer
tokenizer = Tokenizer()
fit the tokenizer on the documents
tokenizer.fit_on_texts(train_docs)

Now that the mapping of words to integers has been prepared, we can use it to encode the
reviews in the training dataset. We can do that by calling the texts_to_sequences() function
on the Tokenizer.

1
2

sequence encode
encoded_docs = tokenizer.texts_to_sequences(train_docs)

We also need to ensure that all documents have the same length.

This is a requirement of Keras for efficient computation. We could truncate reviews to the

smallest size or zero-pad (pad with the value ‘0’) reviews to the maximum length, or some

hybrid. In this case, we will pad all reviews to the length of the longest review in the training

dataset.

https://keras.io/preprocessing/text/#tokenizer

First, we can find the longest review using the max() function on the training dataset and
take its length. We can then call the Keras function pad_sequences() to pad the sequences
to the maximum length by adding 0 values on the end.

1
2
3

pad sequences
max_length = max([len(s.split()) for s in train_docs])
Xtrain = pad_sequences(encoded_docs, maxlen=max_length, padding='post')

Finally, we can define the class labels for the training dataset, needed to fit the supervised
neural network model to predict the sentiment of reviews.

1
2

define training labels
ytrain = array([0 for _ in range(900)] + [1 for _ in range(900)])

We can then encode and pad the test dataset, needed later to evaluate the model after we
train it.

1
2
3
4
5
6
7
8
9

10

load all test reviews
positive_docs = process_docs('txt_sentoken/pos', vocab, False)
negative_docs = process_docs('txt_sentoken/neg', vocab, False)
test_docs = negative_docs + positive_docs
sequence encode
encoded_docs = tokenizer.texts_to_sequences(test_docs)
pad sequences
Xtest = pad_sequences(encoded_docs, maxlen=max_length, padding='post')
define test labels
ytest = array([0 for _ in range(100)] + [1 for _ in range(100)])

We are now ready to define our neural network model.

The model will use an Embedding layer as the first hidden layer. The Embedding requires

the specification of the vocabulary size, the size of the real-valued vector space, and the

maximum length of input documents.

The vocabulary size is the total number of words in our vocabulary, plus one for unknown
words. This could be the vocab set length or the size of the vocab within the tokenizer used
to integer encode the documents, for example:

1
2

define vocabulary size (largest integer value)
vocab_size = len(tokenizer.word_index) + 1

We will use a 100-dimensional vector space, but you could try other values, such as 50 or

150. Finally, the maximum document length was calculated above in

the max_length variable used during padding.

The complete model definition is listed below including the Embedding layer.

We use a Convolutional Neural Network (CNN) as they have proven to be successful at

document classification problems. A conservative CNN configuration is used with 32 filters

(parallel fields for processing words) and a kernel size of 8 with a rectified linear (‘relu’)

activation function. This is followed by a pooling layer that reduces the output of the

convolutional layer by half.

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/

Next, the 2D output from the CNN part of the model is flattened to one long 2D vector to

represent the ‘features’ extracted by the CNN. The back-end of the model is a standard

Multilayer Perceptron layers to interpret the CNN features. The output layer uses a sigmoid

activation function to output a value between 0 and 1 for the negative and positive

sentiment in the review.

For more advice on effective deep learning model configuration for text classification, see

the post:

Best Practices for Document Classification with Deep Learning

1
2
3
4
5
6
7
8
9

define model
model = Sequential()
model.add(Embedding(vocab_size, 100, input_length=max_length))
model.add(Conv1D(filters=32, kernel_size=8, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(10, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
print(model.summary())

Running just this piece provides a summary of the defined network.

We can see that the Embedding layer expects documents with a length of 442 words as
input and encodes each word in the document as a 100 element vector.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Layer (type) Output Shape Param #
===
embedding_1 (Embedding) (None, 442, 100) 2576800

conv1d_1 (Conv1D) (None, 435, 32) 25632

max_pooling1d_1 (MaxPooling1 (None, 217, 32) 0

flatten_1 (Flatten) (None, 6944) 0

dense_1 (Dense) (None, 10) 69450

dense_2 (Dense) (None, 1) 11
===
Total params: 2,671,893
Trainable params: 2,671,893
Non-trainable params: 0

Next, we fit the network on the training data.

We use a binary cross entropy loss function because the problem we are learning is a

binary classification problem. The efficient Adam implementation of stochastic gradient

https://machinelearningmastery.com/best-practices-document-classification-deep-learning/

descent is used and we keep track of accuracy in addition to loss during training. The model

is trained for 10 epochs, or 10 passes through the training data.

The network configuration and training schedule were found with a little trial and error, but
are by no means optimal for this problem. If you can get better results with a different
configuration, let me know.

1
2
3
4

compile network
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
fit network
model.fit(Xtrain, ytrain, epochs=10, verbose=2)

After the model is fit, it is evaluated on the test dataset. This dataset contains words that we
have not seen before and reviews not seen during training.

1
2
3

evaluate
loss, acc = model.evaluate(Xtest, ytest, verbose=0)
print('Test Accuracy: %f' % (acc*100))

We can tie all of this together.

The complete code listing is provided below.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

from string import punctuation
from os import listdir
from numpy import array
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import Embedding
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D

load doc into memory
def load_doc(filename):
 # open the file as read only
 file = open(filename, 'r')
 # read all text
 text = file.read()
 # close the file
 file.close()
 return text

turn a doc into clean tokens
def clean_doc(doc, vocab):
 # split into tokens by white space
 tokens = doc.split()
 # remove punctuation from each token
 table = str.maketrans('', '', punctuation)
 tokens = [w.translate(table) for w in tokens]
 # filter out tokens not in vocab
 tokens = [w for w in tokens if w in vocab]
 tokens = ' '.join(tokens)
 return tokens

load all docs in a directory

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

def process_docs(directory, vocab, is_trian):
 documents = list()
 # walk through all files in the folder
 for filename in listdir(directory):
 # skip any reviews in the test set
 if is_trian and filename.startswith('cv9'):
 continue
 if not is_trian and not filename.startswith('cv9'):
 continue
 # create the full path of the file to open
 path = directory + '/' + filename
 # load the doc
 doc = load_doc(path)
 # clean doc
 tokens = clean_doc(doc, vocab)
 # add to list
 documents.append(tokens)
 return documents

load the vocabulary
vocab_filename = 'vocab.txt'
vocab = load_doc(vocab_filename)
vocab = vocab.split()
vocab = set(vocab)

load all training reviews
positive_docs = process_docs('txt_sentoken/pos', vocab, True)
negative_docs = process_docs('txt_sentoken/neg', vocab, True)
train_docs = negative_docs + positive_docs

create the tokenizer
tokenizer = Tokenizer()
fit the tokenizer on the documents
tokenizer.fit_on_texts(train_docs)

sequence encode
encoded_docs = tokenizer.texts_to_sequences(train_docs)
pad sequences
max_length = max([len(s.split()) for s in train_docs])
Xtrain = pad_sequences(encoded_docs, maxlen=max_length, padding='post')
define training labels
ytrain = array([0 for _ in range(900)] + [1 for _ in range(900)])

load all test reviews
positive_docs = process_docs('txt_sentoken/pos', vocab, False)
negative_docs = process_docs('txt_sentoken/neg', vocab, False)
test_docs = negative_docs + positive_docs
sequence encode
encoded_docs = tokenizer.texts_to_sequences(test_docs)
pad sequences
Xtest = pad_sequences(encoded_docs, maxlen=max_length, padding='post')
define test labels
ytest = array([0 for _ in range(100)] + [1 for _ in range(100)])

define vocabulary size (largest integer value)
vocab_size = len(tokenizer.word_index) + 1

define model
model = Sequential()
model.add(Embedding(vocab_size, 100, input_length=max_length))

96
97
98
99

100
101
102
103
104
105
106
107
108

model.add(Conv1D(filters=32, kernel_size=8, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(10, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
print(model.summary())
compile network
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
fit network
model.fit(Xtrain, ytrain, epochs=10, verbose=2)
evaluate
loss, acc = model.evaluate(Xtest, ytest, verbose=0)
print('Test Accuracy: %f' % (acc*100))

Running the example prints the loss and accuracy at the end of each training epoch. We

can see that the model very quickly achieves 100% accuracy on the training dataset.

At the end of the run, the model achieves an accuracy of 84.5% on the test dataset, which

is a great score.

Given the stochastic nature of neural networks, your specific results will vary. Consider
running the example a few times and taking the average score as the skill of the model.

1
2
3
4
5
6
7
8
9

10
11
12

...
Epoch 6/10
2s - loss: 0.0013 - acc: 1.0000
Epoch 7/10
2s - loss: 8.4573e-04 - acc: 1.0000
Epoch 8/10
2s - loss: 5.8323e-04 - acc: 1.0000
Epoch 9/10
2s - loss: 4.3155e-04 - acc: 1.0000
Epoch 10/10
2s - loss: 3.3083e-04 - acc: 1.0000
Test Accuracy: 84.500000

We have just seen an example of how we can learn a word embedding as part of fitting a

neural network model.

Next, let’s look at how we can efficiently learn a standalone embedding that we could later

use in our neural network.

4. Train word2vec Embedding

In this section, we will discover how to learn a standalone word embedding using an

efficient algorithm called word2vec.

A downside of learning a word embedding as part of the network is that it can be very slow,

especially for very large text datasets.

The word2vec algorithm is an approach to learning a word embedding from a text corpus in

a standalone way. The benefit of the method is that it can produce high-quality word

embeddings very efficiently, in terms of space and time complexity.

The first step is to prepare the documents ready for learning the embedding.

This involves the same data cleaning steps from the previous section, namely splitting

documents by their white space, removing punctuation, and filtering out tokens not in the

vocabulary.

The word2vec algorithm processes documents sentence by sentence. This means we will

preserve the sentence-based structure during cleaning.

We start by loading the vocabulary, as before.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

load doc into memory
def load_doc(filename):
 # open the file as read only
 file = open(filename, 'r')
 # read all text
 text = file.read()
 # close the file
 file.close()
 return text

load the vocabulary
vocab_filename = 'vocab.txt'
vocab = load_doc(vocab_filename)
vocab = vocab.split()
vocab = set(vocab)

Next, we define a function named doc_to_clean_lines() to clean a loaded document line by
line and return a list of the cleaned lines.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

turn a doc into clean tokens
def doc_to_clean_lines(doc, vocab):
 clean_lines = list()
 lines = doc.splitlines()
 for line in lines:
 # split into tokens by white space
 tokens = line.split()
 # remove punctuation from each token
 table = str.maketrans('', '', punctuation)
 tokens = [w.translate(table) for w in tokens]
 # filter out tokens not in vocab
 tokens = [w for w in tokens if w in vocab]
 clean_lines.append(tokens)
 return clean_lines

Next, we adapt the process_docs() function to load and clean all of the documents in a

folder and return a list of all document lines.

The results from this function will be the training data for the word2vec model.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

load all docs in a directory
def process_docs(directory, vocab, is_trian):
 lines = list()
 # walk through all files in the folder
 for filename in listdir(directory):
 # skip any reviews in the test set
 if is_trian and filename.startswith('cv9'):
 continue
 if not is_trian and not filename.startswith('cv9'):
 continue
 # create the full path of the file to open
 path = directory + '/' + filename
 # load and clean the doc
 doc = load_doc(path)
 doc_lines = doc_to_clean_lines(doc, vocab)
 # add lines to list
 lines += doc_lines
 return lines

We can then load all of the training data and convert it into a long list of ‘sentences’ (lists of
tokens) ready for fitting the word2vec model.

1
2
3
4
5

load training data
positive_lines = process_docs('txt_sentoken/pos', vocab, True)
negative_lines = process_docs('txt_sentoken/neg', vocab, True)
sentences = negative_docs + positive_docs
print('Total training sentences: %d' % len(sentences))

We will use the word2vec implementation provided in the Gensim Python library.

Specifically the Word2Vec class.

For more on training a standalone word embedding with Gensim, see the post:

• How to Develop Word Embeddings in Python with Gensim

The model is fit when constructing the class. We pass in the list of clean sentences from the

training data, then specify the size of the embedding vector space (we use 100 again), the

number of neighboring words to look at when learning how to embed each word in the

training sentences (we use 5 neighbors), the number of threads to use when fitting the

model (we use 8, but change this if you have more or less CPU cores), and the minimum

occurrence count for words to consider in the vocabulary (we set this to 1 as we have

already prepared the vocabulary).

After the model is fit, we print the size of the learned vocabulary, which should match the
size of our vocabulary in vocab.txt of 25,767 tokens.

1
2
3
4
5

train word2vec model
model = Word2Vec(sentences, size=100, window=5, workers=8, min_count=1)
summarize vocabulary size in model
words = list(model.wv.vocab)
print('Vocabulary size: %d' % len(words))

https://radimrehurek.com/gensim/models/word2vec.html
https://machinelearningmastery.com/develop-word-embeddings-python-gensim/

Finally, we save the learned embedding vectors to file using

the save_word2vec_format() on the model’s ‘wv‘ (word vector) attribute. The embedding is

saved in ASCII format with one word and vector per line.
The complete example is listed below.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

from string import punctuation
from os import listdir
from gensim.models import Word2Vec

load doc into memory
def load_doc(filename):
 # open the file as read only
 file = open(filename, 'r')
 # read all text
 text = file.read()
 # close the file
 file.close()
 return text

turn a doc into clean tokens
def doc_to_clean_lines(doc, vocab):
 clean_lines = list()
 lines = doc.splitlines()
 for line in lines:
 # split into tokens by white space
 tokens = line.split()
 # remove punctuation from each token
 table = str.maketrans('', '', punctuation)
 tokens = [w.translate(table) for w in tokens]
 # filter out tokens not in vocab
 tokens = [w for w in tokens if w in vocab]
 clean_lines.append(tokens)
 return clean_lines

load all docs in a directory
def process_docs(directory, vocab, is_trian):
 lines = list()
 # walk through all files in the folder
 for filename in listdir(directory):
 # skip any reviews in the test set
 if is_trian and filename.startswith('cv9'):
 continue
 if not is_trian and not filename.startswith('cv9'):
 continue
 # create the full path of the file to open
 path = directory + '/' + filename
 # load and clean the doc
 doc = load_doc(path)
 doc_lines = doc_to_clean_lines(doc, vocab)
 # add lines to list
 lines += doc_lines
 return lines

load the vocabulary
vocab_filename = 'vocab.txt'
vocab = load_doc(vocab_filename)
vocab = vocab.split()
vocab = set(vocab)

https://radimrehurek.com/gensim/models/keyedvectors.html

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

load training data
positive_lines = process_docs('txt_sentoken/pos', vocab, True)
negative_lines = process_docs('txt_sentoken/neg', vocab, True)
sentences = negative_docs + positive_docs
print('Total training sentences: %d' % len(sentences))

train word2vec model
model = Word2Vec(sentences, size=100, window=5, workers=8, min_count=1)
summarize vocabulary size in model
words = list(model.wv.vocab)
print('Vocabulary size: %d' % len(words))

save model in ASCII (word2vec) format
filename = 'embedding_word2vec.txt'
model.wv.save_word2vec_format(filename, binary=False)

Running the example loads 58,109 sentences from the training data and creates an

embedding for a vocabulary of 25,767 words.

You should now have a file ’embedding_word2vec.txt’ with the learned vectors in your
current working directory.

1
2

Total training sentences: 58109
Vocabulary size: 25767

Next, let’s look at using these learned vectors in our model.

5. Use Pre-trained Embedding

In this section, we will use a pre-trained word embedding prepared on a very large text

corpus.

We can use the pre-trained word embedding developed in the previous section and the

CNN model developed in the section before that.

The first step is to load the word embedding as a directory of words to vectors. The word

embedding was saved in so-called ‘word2vec‘ format that contains a header line. We will

skip this header line when loading the embedding.
The function below named load_embedding() loads the embedding and returns a directory
of words mapped to the vectors in NumPy format.

1
2
3
4
5
6
7
8
9

10

load embedding as a dict
def load_embedding(filename):
 # load embedding into memory, skip first line
 file = open(filename,'r')
 lines = file.readlines()[1:]
 file.close()
 # create a map of words to vectors
 embedding = dict()
 for line in lines:
 parts = line.split()

11
12
13

 # key is string word, value is numpy array for vector
 embedding[parts[0]] = asarray(parts[1:], dtype='float32')
 return embedding

Now that we have all of the vectors in memory, we can order them in such a way as to

match the integer encoding prepared by the Keras Tokenizer.

Recall that we integer encode the review documents prior to passing them to the

Embedding layer. The integer maps to the index of a specific vector in the embedding layer.

Therefore, it is important that we lay the vectors out in the Embedding layer such that the

encoded words map to the correct vector.

Below defines a function get_weight_matrix() that takes the loaded embedding and the
tokenizer.word_index vocabulary as arguments and returns a matrix with the word vectors
in the correct locations.

1
2
3
4
5
6
7
8
9

10

create a weight matrix for the Embedding layer from a loaded embedding
def get_weight_matrix(embedding, vocab):
 # total vocabulary size plus 0 for unknown words
 vocab_size = len(vocab) + 1
 # define weight matrix dimensions with all 0
 weight_matrix = zeros((vocab_size, 100))
 # step vocab, store vectors using the Tokenizer's integer mapping
 for word, i in vocab.items():
 weight_matrix[i] = embedding.get(word)
 return weight_matrix

Now we can use these functions to create our new Embedding layer for our model.

1
2
3
4
5
6
7

...
load embedding from file
raw_embedding = load_embedding('embedding_word2vec.txt')
get vectors in the right order
embedding_vectors = get_weight_matrix(raw_embedding, tokenizer.word_index)
create the embedding layer
embedding_layer = Embedding(vocab_size, 100, weights=[embedding_vectors], input_length=max_length,
trainable=False)

Note that the prepared weight matrix embedding_vectors is passed to the new Embedding

layer as an argument and that we set the ‘trainable‘ argument to ‘False‘ to ensure that the

network does not try to adapt the pre-learned vectors as part of training the network.
We can now add this layer to our model. We also have a slightly different model
configuration with a lot more filters (128) in the CNN model and a kernel that matches the 5
words used as neighbors when developing the word2vec embedding. Finally, the back-end
of the model was simplified.

1
2
3
4
5
6
7
8

define model
model = Sequential()
model.add(embedding_layer)
model.add(Conv1D(filters=128, kernel_size=5, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
print(model.summary())

These changes were found with a little trial and error.

The complete code listing is provided below.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

from string import punctuation
from os import listdir
from numpy import array
from numpy import asarray
from numpy import zeros
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import Embedding
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D

load doc into memory
def load_doc(filename):
 # open the file as read only
 file = open(filename, 'r')
 # read all text
 text = file.read()
 # close the file
 file.close()
 return text

turn a doc into clean tokens
def clean_doc(doc, vocab):
 # split into tokens by white space
 tokens = doc.split()
 # remove punctuation from each token
 table = str.maketrans('', '', punctuation)
 tokens = [w.translate(table) for w in tokens]
 # filter out tokens not in vocab
 tokens = [w for w in tokens if w in vocab]
 tokens = ' '.join(tokens)
 return tokens

load all docs in a directory
def process_docs(directory, vocab, is_trian):
 documents = list()
 # walk through all files in the folder
 for filename in listdir(directory):
 # skip any reviews in the test set
 if is_trian and filename.startswith('cv9'):
 continue
 if not is_trian and not filename.startswith('cv9'):
 continue
 # create the full path of the file to open
 path = directory + '/' + filename
 # load the doc
 doc = load_doc(path)
 # clean doc
 tokens = clean_doc(doc, vocab)
 # add to list
 documents.append(tokens)
 return documents

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

load embedding as a dict
def load_embedding(filename):
 # load embedding into memory, skip first line
 file = open(filename,'r')
 lines = file.readlines()[1:]
 file.close()
 # create a map of words to vectors
 embedding = dict()
 for line in lines:
 parts = line.split()
 # key is string word, value is numpy array for vector
 embedding[parts[0]] = asarray(parts[1:], dtype='float32')
 return embedding

create a weight matrix for the Embedding layer from a loaded embedding
def get_weight_matrix(embedding, vocab):
 # total vocabulary size plus 0 for unknown words
 vocab_size = len(vocab) + 1
 # define weight matrix dimensions with all 0
 weight_matrix = zeros((vocab_size, 100))
 # step vocab, store vectors using the Tokenizer's integer mapping
 for word, i in vocab.items():
 weight_matrix[i] = embedding.get(word)
 return weight_matrix

load the vocabulary
vocab_filename = 'vocab.txt'
vocab = load_doc(vocab_filename)
vocab = vocab.split()
vocab = set(vocab)

load all training reviews
positive_docs = process_docs('txt_sentoken/pos', vocab, True)
negative_docs = process_docs('txt_sentoken/neg', vocab, True)
train_docs = negative_docs + positive_docs

create the tokenizer
tokenizer = Tokenizer()
fit the tokenizer on the documents
tokenizer.fit_on_texts(train_docs)

sequence encode
encoded_docs = tokenizer.texts_to_sequences(train_docs)
pad sequences
max_length = max([len(s.split()) for s in train_docs])
Xtrain = pad_sequences(encoded_docs, maxlen=max_length, padding='post')
define training labels
ytrain = array([0 for _ in range(900)] + [1 for _ in range(900)])

load all test reviews
positive_docs = process_docs('txt_sentoken/pos', vocab, False)
negative_docs = process_docs('txt_sentoken/neg', vocab, False)
test_docs = negative_docs + positive_docs
sequence encode
encoded_docs = tokenizer.texts_to_sequences(test_docs)
pad sequences
Xtest = pad_sequences(encoded_docs, maxlen=max_length, padding='post')
define test labels
ytest = array([0 for _ in range(100)] + [1 for _ in range(100)])

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

define vocabulary size (largest integer value)
vocab_size = len(tokenizer.word_index) + 1

load embedding from file
raw_embedding = load_embedding('embedding_word2vec.txt')
get vectors in the right order
embedding_vectors = get_weight_matrix(raw_embedding, tokenizer.word_index)
create the embedding layer
embedding_layer = Embedding(vocab_size, 100, weights=[embedding_vectors], input_length=max_length,
trainable=False)

define model
model = Sequential()
model.add(embedding_layer)
model.add(Conv1D(filters=128, kernel_size=5, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
print(model.summary())
compile network
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
fit network
model.fit(Xtrain, ytrain, epochs=10, verbose=2)
evaluate
loss, acc = model.evaluate(Xtest, ytest, verbose=0)
print('Test Accuracy: %f' % (acc*100))

Running the example shows that performance was not improved.

In fact, performance was a lot worse. The results show that the training dataset was learned

successfully, but evaluation on the test dataset was very poor, at just above 50% accuracy.

The cause of the poor test performance may be because of the chosen word2vec
configuration or the chosen neural network configuration.

1
2
3
4
5
6
7
8
9

10
11
12

...
Epoch 6/10
2s - loss: 0.3306 - acc: 0.8778
Epoch 7/10
2s - loss: 0.2888 - acc: 0.8917
Epoch 8/10
2s - loss: 0.1878 - acc: 0.9439
Epoch 9/10
2s - loss: 0.1255 - acc: 0.9750
Epoch 10/10
2s - loss: 0.0812 - acc: 0.9928
Test Accuracy: 53.000000

The weights in the embedding layer can be used as a starting point for the network, and

adapted during the training of the network. We can do this by setting ‘trainable=True‘ (the

default) in the creation of the embedding layer.

Repeating the experiment with this change shows slightly better results, but still poor.

I would encourage you to explore alternate configurations of the embedding and network to
see if you can do better. Let me know how you do.

1
2
3
4
5
6
7
8
9

10
11
12

...
Epoch 6/10
4s - loss: 0.0950 - acc: 0.9917
Epoch 7/10
4s - loss: 0.0355 - acc: 0.9983
Epoch 8/10
4s - loss: 0.0158 - acc: 1.0000
Epoch 9/10
4s - loss: 0.0080 - acc: 1.0000
Epoch 10/10
4s - loss: 0.0050 - acc: 1.0000
Test Accuracy: 57.500000

It is possible to use pre-trained word vectors prepared on very large corpora of text data.

For example, both Google and Stanford provide pre-trained word vectors that you can

download, trained with the efficient word2vec and GloVe methods respectively.

Let’s try to use pre-trained vectors in our model.

You can download pre-trained GloVe vectors from the Stanford webpage. Specifically,

vectors trained on Wikipedia data:
• glove.6B.zip (822 Megabyte download)

Unzipping the file, you will find pre-trained embeddings for various different dimensions. We

will load the 100 dimension version in the file ‘glove.6B.100d.txt‘
The Glove file does not contain a header file, so we do not need to skip the first line when
loading the embedding into memory. The updated load_embedding() function is listed
below.

1
2
3
4
5
6
7
8
9

10
11
12
13

load embedding as a dict
def load_embedding(filename):
 # load embedding into memory, skip first line
 file = open(filename,'r')
 lines = file.readlines()
 file.close()
 # create a map of words to vectors
 embedding = dict()
 for line in lines:
 parts = line.split()
 # key is string word, value is numpy array for vector
 embedding[parts[0]] = asarray(parts[1:], dtype='float32')
 return embedding

It is possible that the loaded embedding does not contain all of the words in our chosen
vocabulary. As such, when creating the Embedding weight matrix, we need to skip words
that do not have a corresponding vector in the loaded GloVe data. Below is the updated,
more defensive version of the get_weight_matrix() function.

1
2

create a weight matrix for the Embedding layer from a loaded embedding
def get_weight_matrix(embedding, vocab):

https://nlp.stanford.edu/projects/glove/
http://nlp.stanford.edu/data/glove.6B.zip

3
4
5
6
7
8
9

10
11
12

 # total vocabulary size plus 0 for unknown words
 vocab_size = len(vocab) + 1
 # define weight matrix dimensions with all 0
 weight_matrix = zeros((vocab_size, 100))
 # step vocab, store vectors using the Tokenizer's integer mapping
 for word, i in vocab.items():
 vector = embedding.get(word)
 if vector is not None:
 weight_matrix[i] = vector
 return weight_matrix

We can now load the GloVe embedding and create the Embedding layer as before.

1
2
3
4
5
6

load embedding from file
raw_embedding = load_embedding('glove.6B.100d.txt')
get vectors in the right order
embedding_vectors = get_weight_matrix(raw_embedding, tokenizer.word_index)
create the embedding layer
embedding_layer = Embedding(vocab_size, 100, weights=[embedding_vectors], input_length=max_length,
trainable=False)

We will use the same model as before.

The complete example is listed below.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

from string import punctuation
from os import listdir
from numpy import array
from numpy import asarray
from numpy import zeros
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import Embedding
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D

load doc into memory
def load_doc(filename):
 # open the file as read only
 file = open(filename, 'r')
 # read all text
 text = file.read()
 # close the file
 file.close()
 return text

turn a doc into clean tokens
def clean_doc(doc, vocab):
 # split into tokens by white space
 tokens = doc.split()
 # remove punctuation from each token
 table = str.maketrans('', '', punctuation)
 tokens = [w.translate(table) for w in tokens]
 # filter out tokens not in vocab
 tokens = [w for w in tokens if w in vocab]
 tokens = ' '.join(tokens)
 return tokens

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

load all docs in a directory
def process_docs(directory, vocab, is_trian):
 documents = list()
 # walk through all files in the folder
 for filename in listdir(directory):
 # skip any reviews in the test set
 if is_trian and filename.startswith('cv9'):
 continue
 if not is_trian and not filename.startswith('cv9'):
 continue
 # create the full path of the file to open
 path = directory + '/' + filename
 # load the doc
 doc = load_doc(path)
 # clean doc
 tokens = clean_doc(doc, vocab)
 # add to list
 documents.append(tokens)
 return documents

load embedding as a dict
def load_embedding(filename):
 # load embedding into memory, skip first line
 file = open(filename,'r')
 lines = file.readlines()
 file.close()
 # create a map of words to vectors
 embedding = dict()
 for line in lines:
 parts = line.split()
 # key is string word, value is numpy array for vector
 embedding[parts[0]] = asarray(parts[1:], dtype='float32')
 return embedding

create a weight matrix for the Embedding layer from a loaded embedding
def get_weight_matrix(embedding, vocab):
 # total vocabulary size plus 0 for unknown words
 vocab_size = len(vocab) + 1
 # define weight matrix dimensions with all 0
 weight_matrix = zeros((vocab_size, 100))
 # step vocab, store vectors using the Tokenizer's integer mapping
 for word, i in vocab.items():
 vector = embedding.get(word)
 if vector is not None:
 weight_matrix[i] = vector
 return weight_matrix

load the vocabulary
vocab_filename = 'vocab.txt'
vocab = load_doc(vocab_filename)
vocab = vocab.split()
vocab = set(vocab)

load all training reviews
positive_docs = process_docs('txt_sentoken/pos', vocab, True)
negative_docs = process_docs('txt_sentoken/neg', vocab, True)
train_docs = negative_docs + positive_docs

create the tokenizer
tokenizer = Tokenizer()

97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

fit the tokenizer on the documents
tokenizer.fit_on_texts(train_docs)

sequence encode
encoded_docs = tokenizer.texts_to_sequences(train_docs)
pad sequences
max_length = max([len(s.split()) for s in train_docs])
Xtrain = pad_sequences(encoded_docs, maxlen=max_length, padding='post')
define training labels
ytrain = array([0 for _ in range(900)] + [1 for _ in range(900)])

load all test reviews
positive_docs = process_docs('txt_sentoken/pos', vocab, False)
negative_docs = process_docs('txt_sentoken/neg', vocab, False)
test_docs = negative_docs + positive_docs
sequence encode
encoded_docs = tokenizer.texts_to_sequences(test_docs)
pad sequences
Xtest = pad_sequences(encoded_docs, maxlen=max_length, padding='post')
define test labels
ytest = array([0 for _ in range(100)] + [1 for _ in range(100)])

define vocabulary size (largest integer value)
vocab_size = len(tokenizer.word_index) + 1

load embedding from file
raw_embedding = load_embedding('glove.6B.100d.txt')
get vectors in the right order
embedding_vectors = get_weight_matrix(raw_embedding, tokenizer.word_index)
create the embedding layer
embedding_layer = Embedding(vocab_size, 100, weights=[embedding_vectors], input_length=max_length,
trainable=False)

define model
model = Sequential()
model.add(embedding_layer)
model.add(Conv1D(filters=128, kernel_size=5, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
print(model.summary())
compile network
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
fit network
model.fit(Xtrain, ytrain, epochs=10, verbose=2)
evaluate
loss, acc = model.evaluate(Xtest, ytest, verbose=0)
print('Test Accuracy: %f' % (acc*100))

Running the example shows better performance.

Again, the training dataset is easily learned and the model achieves 76% accuracy on the

test dataset. This is good, but not as good as using a learned Embedding layer.

This may be cause of the higher quality vectors trained on more data and/or using a slightly

different training process.

Your specific results may vary given the stochastic nature of neural networks. Try running
the example a few times.

1
2
3
4
5
6
7
8
9

10
11
12

...
Epoch 6/10
2s - loss: 0.0278 - acc: 1.0000
Epoch 7/10
2s - loss: 0.0174 - acc: 1.0000
Epoch 8/10
2s - loss: 0.0117 - acc: 1.0000
Epoch 9/10
2s - loss: 0.0086 - acc: 1.0000
Epoch 10/10
2s - loss: 0.0068 - acc: 1.0000
Test Accuracy: 76.000000

In this case, it seems that learning the embedding as part of the learning task may be a

better direction than using a specifically trained embedding or a more general pre-trained

embedding.

Further Reading

This section provides more resources on the topic if you are looking go deeper.

Dataset

• Movie Review Data

• A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum

Cuts, 2004.

• Movie Review Polarity Dataset (.tgz)

• Dataset Readme v2.0 and v1.1.

APIs

• collections API – Container datatypes

• Tokenizer Keras API

• Embedding Keras API

• Gensim Word2Vec API

• Gensim WordVector API

Embedding Methods

• word2vec on Google Code

• GloVe on Stanford

Related Posts

• Using pre-trained word embeddings in a Keras model, 2016.

• Implementing a CNN for Text Classification in TensorFlow, 2015.

Summary

In this tutorial, you discovered how to develop word embeddings for the classification of

movie reviews.

http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://xxx.lanl.gov/abs/cs/0409058
http://xxx.lanl.gov/abs/cs/0409058
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/poldata.README.2.0.txt
http://www.cs.cornell.edu/people/pabo/movie-review-data/README.1.1
https://docs.python.org/3/library/collections.html
https://keras.io/preprocessing/text/#tokenizer
https://keras.io/layers/embeddings/
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/keyedvectors.html
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/

Specifically, you learned:

• How to prepare movie review text data for classification with deep learning methods.

• How to learn a word embedding as part of fitting a deep learning model.

• How to learn a standalone word embedding and how to use a pre-trained embedding in a neural

network model.

Do you have any questions?

Ask your questions in the comments below and I will do my best to answer.

Note: This post is an excerpt chapter from: “Deep Learning for Natural Language

Processing“. Take a look, if you want more step-by-step tutorials on getting the most out of

deep learning methods when working with text data.

https://machinelearningmastery.com/deep-learning-for-nlp/
https://machinelearningmastery.com/deep-learning-for-nlp/

