
How to Develop a Word Embedding Model for 
Predicting Movie Review Sentiment 

by Jason Brownlee  in Deep Learning for Natural Language Processing 

Develop a Deep Learning Model to Automatically Classify Movie Reviews 

as Positive or Negative in Python with Keras, Step-by-Step. 

Word embeddings are a technique for representing text where different words with similar 

meaning have a similar real-valued vector representation. 

They are a key breakthrough that has led to great performance of neural network models on 

a suite of challenging natural language processing problems. 

In this tutorial, you will discover how to develop word embedding models for neural 

networks to classify movie reviews. 

After completing this tutorial, you will know: 

• How to prepare movie review text data for classification with deep learning methods. 

• How to learn a word embedding as part of fitting a deep learning model. 

• How to learn a standalone word embedding and how to use a pre-trained embedding in a neural 

network model. 

Let’s get started. 

Note: This is an excerpt from: “Deep Learning for Natural Language Processing“. 

Take a look, if you want more step-by-step tutorials on getting the most out of deep learning 

methods when working with text data. 

https://machinelearningmastery.com/author/jasonb/
https://machinelearningmastery.com/category/natural-language-processing/
https://machinelearningmastery.com/deep-learning-for-nlp/
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Tutorial Overview 

This tutorial is divided into 5 parts; they are: 

1. Movie Review Dataset 

2. Data Preparation 

3. Train Embedding Layer 

4. Train word2vec Embedding 

5. Use Pre-trained Embedding 

Python Environment 

This tutorial assumes you have a Python SciPy environment installed, ideally with Python 3. 

https://www.flickr.com/photos/fuzzyblue/6351564408/


You must have Keras (2.2 or higher) installed with either the TensorFlow or Theano 

backend. 

The tutorial also assumes you have scikit-learn, Pandas, NumPy, and Matplotlib installed. 

If you need help with your environment, see this tutorial: 

• How to Setup a Python Environment for Machine Learning and Deep Learning with Anaconda 

A GPU is not required for this tutorial, nevertheless, you can access GPUs cheaply on 

Amazon Web Services. Learn how in this tutorial: 

• How to Setup Amazon AWS EC2 GPUs to Train Keras Deep Learning Models (step-by-step) 

Let’s dive in. 

1. Movie Review Dataset 

The Movie Review Data is a collection of movie reviews retrieved from the imdb.com 

website in the early 2000s by Bo Pang and Lillian Lee. The reviews were collected and 

made available as part of their research on natural language processing. 

The reviews were originally released in 2002, but an updated and cleaned up version were 

released in 2004, referred to as “v2.0”. 

The dataset is comprised of 1,000 positive and 1,000 negative movie reviews drawn from 

an archive of the rec.arts.movies.reviews newsgroup hosted at imdb.com. The authors refer 

to this dataset as the “polarity dataset.” 

Our data contains 1000 positive and 1000 negative reviews all written before 2002, with a 

cap of 20 reviews per author (312 authors total) per category. We refer to this corpus as the 

polarity dataset. 

— A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based 

on Minimum Cuts, 2004. 

The data has been cleaned up somewhat, for example: 

• The dataset is comprised of only English reviews. 

• All text has been converted to lowercase. 

• There is white space around punctuation like periods, commas, and brackets. 

• Text has been split into one sentence per line. 

https://machinelearningmastery.com/setup-python-environment-machine-learning-deep-learning-anaconda/
https://machinelearningmastery.com/develop-evaluate-large-deep-learning-models-keras-amazon-web-services/
http://reviews.imdb.com/Reviews
http://xxx.lanl.gov/abs/cs/0409058
http://xxx.lanl.gov/abs/cs/0409058


The data has been used for a few related natural language processing tasks. For 

classification, the performance of machine learning models (such as Support Vector 

Machines) on the data is in the range of high 70% to low 80% (e.g. 78%-82%). 

More sophisticated data preparation may see results as high as 86% with 10-fold cross 

validation. This gives us a ballpark of low-to-mid 80s if we were looking to use this dataset 

in experiments of modern methods. 

… depending on choice of downstream polarity classifier, we can achieve highly statistically 

significant improvement (from 82.8% to 86.4%) 

— A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based 

on Minimum Cuts, 2004. 

You can download the dataset from here: 

• Movie Review Polarity Dataset (review_polarity.tar.gz, 3MB) 

After unzipping the file, you will have a directory called “txt_sentoken” with two sub-

directories containing the text “neg” and “pos” for negative and positive reviews. Reviews 

are stored one per file with a naming convention cv000 to cv999 for each neg and pos. 

Next, let’s look at loading and preparing the text data. 

2. Data Preparation 

In this section, we will look at 3 things: 

1. Separation of data into training and test sets. 

2. Loading and cleaning the data to remove punctuation and numbers. 

3. Defining a vocabulary of preferred words. 

Split into Train and Test Sets 

We are pretending that we are developing a system that can predict the sentiment of a 

textual movie review as either positive or negative. 

This means that after the model is developed, we will need to make predictions on new 

textual reviews. This will require all of the same data preparation to be performed on those 

new reviews as is performed on the training data for the model. 

We will ensure that this constraint is built into the evaluation of our models by splitting the 

training and test datasets prior to any data preparation. This means that any knowledge in 

http://xxx.lanl.gov/abs/cs/0409058
http://xxx.lanl.gov/abs/cs/0409058
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz


the data in the test set that could help us better prepare the data (e.g. the words used) are 

unavailable in the preparation of data used for training the model. 

That being said, we will use the last 100 positive reviews and the last 100 negative reviews 

as a test set (100 reviews) and the remaining 1,800 reviews as the training dataset. 

This is a 90% train, 10% split of the data. 

The split can be imposed easily by using the filenames of the reviews where reviews named 

000 to 899 are for training data and reviews named 900 onwards are for test. 

Loading and Cleaning Reviews 

The text data is already pretty clean; not much preparation is required. 

If you are new to cleaning text data, see this post: 

• How to Clean Text for Machine Learning with Python 

Without getting bogged down too much in the details, we will prepare the data using the 

following way: 

• Split tokens on white space. 

• Remove all punctuation from words. 

• Remove all words that are not purely comprised of alphabetical characters. 

• Remove all words that are known stop words. 

• Remove all words that have a length <= 1 character. 

We can put all of these steps into a function called clean_doc() that takes as an argument 

the raw text loaded from a file and returns a list of cleaned tokens. We can also define a 

function load_doc() that loads a document from file ready for use with 

the clean_doc() function. 
An example of cleaning the first positive review is listed below.  
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from nltk.corpus import stopwords 
import string 
  
# load doc into memory 
def load_doc(filename): 
 # open the file as read only 
 file = open(filename, 'r') 
 # read all text 
 text = file.read() 
 # close the file 
 file.close() 
 return text 
  
# turn a doc into clean tokens 

https://machinelearningmastery.com/clean-text-machine-learning-python/
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def clean_doc(doc): 
 # split into tokens by white space 
 tokens = doc.split() 
 # remove punctuation from each token 
 table = str.maketrans('', '', string.punctuation) 
 tokens = [w.translate(table) for w in tokens] 
 # remove remaining tokens that are not alphabetic 
 tokens = [word for word in tokens if word.isalpha()] 
 # filter out stop words 
 stop_words = set(stopwords.words('english')) 
 tokens = [w for w in tokens if not w in stop_words] 
 # filter out short tokens 
 tokens = [word for word in tokens if len(word) > 1] 
 return tokens 
  
# load the document 
filename = 'txt_sentoken/pos/cv000_29590.txt' 
text = load_doc(filename) 
tokens = clean_doc(text) 
print(tokens) 

Running the example prints a long list of clean tokens. 

There are many more cleaning steps we may want to explore and I leave them as further 

exercises. 

I’d love to see what you can come up with. 
Post your approaches and findings in the comments at the end.  
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... 
'creepy', 'place', 'even', 'acting', 'hell', 'solid', 'dreamy', 'depp', 'turning', 'typically', 'strong', 'performance', 'deftly', 
'handling', 'british', 'accent', 'ians', 'holm', 'joe', 'goulds', 'secret', 'richardson', 'dalmatians', 'log', 'great', 'supporting', 
'roles', 'big', 'surprise', 'graham', 'cringed', 'first', 'time', 'opened', 'mouth', 'imagining', 'attempt', 'irish', 'accent', 
'actually', 'wasnt', 'half', 'bad', 'film', 'however', 'good', 'strong', 'violencegore', 'sexuality', 'language', 'drug', 'content'] 

Define a Vocabulary 

It is important to define a vocabulary of known words when using a bag-of-words or 

embedding model. 

The more words, the larger the representation of documents, therefore it is important to 

constrain the words to only those believed to be predictive. This is difficult to know 

beforehand and often it is important to test different hypotheses about how to construct a 

useful vocabulary. 

We have already seen how we can remove punctuation and numbers from the vocabulary 

in the previous section. We can repeat this for all documents and build a set of all known 

words. 



We can develop a vocabulary as a Counter, which is a dictionary mapping of words and 

their counts that allow us to easily update and query. 

Each document can be added to the counter (a new function called add_doc_to_vocab()) 

and we can step over all of the reviews in the negative directory and then the positive 

directory (a new function called process_docs()). 
The complete example is listed below.  
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from string import punctuation 
from os import listdir 
from collections import Counter 
from nltk.corpus import stopwords 
  
# load doc into memory 
def load_doc(filename): 
 # open the file as read only 
 file = open(filename, 'r') 
 # read all text 
 text = file.read() 
 # close the file 
 file.close() 
 return text 
  
# turn a doc into clean tokens 
def clean_doc(doc): 
 # split into tokens by white space 
 tokens = doc.split() 
 # remove punctuation from each token 
 table = str.maketrans('', '', punctuation) 
 tokens = [w.translate(table) for w in tokens] 
 # remove remaining tokens that are not alphabetic 
 tokens = [word for word in tokens if word.isalpha()] 
 # filter out stop words 
 stop_words = set(stopwords.words('english')) 
 tokens = [w for w in tokens if not w in stop_words] 
 # filter out short tokens 
 tokens = [word for word in tokens if len(word) > 1] 
 return tokens 
  
# load doc and add to vocab 
def add_doc_to_vocab(filename, vocab): 
 # load doc 
 doc = load_doc(filename) 
 # clean doc 
 tokens = clean_doc(doc) 
 # update counts 
 vocab.update(tokens) 
  
# load all docs in a directory 
def process_docs(directory, vocab, is_trian): 
 # walk through all files in the folder 
 for filename in listdir(directory): 
  # skip any reviews in the test set 
  if is_trian and filename.startswith('cv9'): 
   continue 
  if not is_trian and not filename.startswith('cv9'): 
   continue 
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  # create the full path of the file to open 
  path = directory + '/' + filename 
  # add doc to vocab 
  add_doc_to_vocab(path, vocab) 
  
# define vocab 
vocab = Counter() 
# add all docs to vocab 
process_docs('txt_sentoken/neg', vocab, True) 
process_docs('txt_sentoken/pos', vocab, True) 
# print the size of the vocab 
print(len(vocab)) 
# print the top words in the vocab 
print(vocab.most_common(50)) 

Running the example shows that we have a vocabulary of 44,276 words. 

We also can see a sample of the top 50 most used words in the movie reviews. 

Note, that this vocabulary was constructed based on only those reviews in the training 
dataset.  
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44276 
[('film', 7983), ('one', 4946), ('movie', 4826), ('like', 3201), ('even', 2262), ('good', 2080), ('time', 2041), ('story', 1907), 
('films', 1873), ('would', 1844), ('much', 1824), ('also', 1757), ('characters', 1735), ('get', 1724), ('character', 1703), 
('two', 1643), ('first', 1588), ('see', 1557), ('way', 1515), ('well', 1511), ('make', 1418), ('really', 1407), ('little', 1351), 
('life', 1334), ('plot', 1288), ('people', 1269), ('could', 1248), ('bad', 1248), ('scene', 1241), ('movies', 1238), ('never', 
1201), ('best', 1179), ('new', 1140), ('scenes', 1135), ('man', 1131), ('many', 1130), ('doesnt', 1118), ('know', 1092), 
('dont', 1086), ('hes', 1024), ('great', 1014), ('another', 992), ('action', 985), ('love', 977), ('us', 967), ('go', 952), 
('director', 948), ('end', 946), ('something', 945), ('still', 936)] 

We can step through the vocabulary and remove all words that have a low occurrence, such 

as only being used once or twice in all reviews. 

For example, the following snippet will retrieve only the tokens that of appears 2 or more 
times in all reviews.  
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# keep tokens with a min occurrence 
min_occurane = 2 
tokens = [k for k,c in vocab.items() if c >= min_occurane] 
print(len(tokens)) 

Running the above example with this addition shows that the vocabulary size drops by a 
little more than half its size from 44,276 to 25,767 words.  

1 25767 

Finally, the vocabulary can be saved to a new file called vocab.txt that we can later load and 

use to filter movie reviews prior to encoding them for modeling. We define a new function 

called save_list() that saves the vocabulary to file, with one word per file. 
For example:  
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# save list to file 
def save_list(lines, filename): 
 # convert lines to a single blob of text 
 data = '\n'.join(lines) 
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 # open file 
 file = open(filename, 'w') 
 # write text 
 file.write(data) 
 # close file 
 file.close() 
  
# save tokens to a vocabulary file 
save_list(tokens, 'vocab.txt') 

Running the min occurrence filter on the vocabulary and saving it to file, you should now 

have a new file called vocab.txt with only the words we are interested in. 
The order of words in your file will differ, but should look something like the following:  
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aberdeen 
dupe 
burt 
libido 
hamlet 
arlene 
available 
corners 
web 
columbia 
... 

We are now ready to look at learning features from the reviews. 

3. Train Embedding Layer 

In this section, we will learn a word embedding while training a neural network on the 

classification problem. 

A word embedding is a way of representing text where each word in the vocabulary is 

represented by a real valued vector in a high-dimensional space. The vectors are learned in 

such a way that words that have similar meanings will have similar representation in the 

vector space (close in the vector space). This is a more expressive representation for text 

than more classical methods like bag-of-words, where relationships between words or 

tokens are ignored, or forced in bigram and trigram approaches. 

The real valued vector representation for words can be learned while training the neural 

network. We can do this in the Keras deep learning library using the Embedding layer. 

If you are new to word embeddings, see the post: 

• What Are Word Embeddings for Text? 

If you are new to word embedding layers in Keras, see the post: 

• How to Use Word Embedding Layers for Deep Learning with Keras 

https://keras.io/layers/embeddings/
https://machinelearningmastery.com/what-are-word-embeddings/
https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/


The first step is to load the vocabulary. We will use it to filter out words from movie reviews 

that we are not interested in. 

If you have worked through the previous section, you should have a local file called 
‘vocab.txt‘ with one word per line. We can load that file and build a vocabulary as a set for 
checking the validity of tokens.  
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# load doc into memory 
def load_doc(filename): 
 # open the file as read only 
 file = open(filename, 'r') 
 # read all text 
 text = file.read() 
 # close the file 
 file.close() 
 return text 
  
# load the vocabulary 
vocab_filename = 'vocab.txt' 
vocab = load_doc(vocab_filename) 
vocab = vocab.split() 
vocab = set(vocab) 

Next, we need to load all of the training data movie reviews. For that we can adapt 

the process_docs() from the previous section to load the documents, clean them, and return 

them as a list of strings, with one document per string. We want each document to be a 

string for easy encoding as a sequence of integers later. 

Cleaning the document involves splitting each review based on white space, removing 

punctuation, and then filtering out all tokens not in the vocabulary. 

The updated clean_doc() function is listed below.  
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# turn a doc into clean tokens 
def clean_doc(doc, vocab): 
 # split into tokens by white space 
 tokens = doc.split() 
 # remove punctuation from each token 
 table = str.maketrans('', '', punctuation) 
 tokens = [w.translate(table) for w in tokens] 
 # filter out tokens not in vocab 
 tokens = [w for w in tokens if w in vocab] 
 tokens = ' '.join(tokens) 
 return tokens 

The updated process_docs() can then call the clean_doc() for each document on the ‘pos‘ 
and ‘neg‘ directories that are in our training dataset.  
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# load all docs in a directory 
def process_docs(directory, vocab, is_trian): 
 documents = list() 
 # walk through all files in the folder 
 for filename in listdir(directory): 
  # skip any reviews in the test set 
  if is_trian and filename.startswith('cv9'): 
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   continue 
  if not is_trian and not filename.startswith('cv9'): 
   continue 
  # create the full path of the file to open 
  path = directory + '/' + filename 
  # load the doc 
  doc = load_doc(path) 
  # clean doc 
  tokens = clean_doc(doc, vocab) 
  # add to list 
  documents.append(tokens) 
 return documents 
  
# load all training reviews 
positive_docs = process_docs('txt_sentoken/pos', vocab, True) 
negative_docs = process_docs('txt_sentoken/neg', vocab, True) 
train_docs = negative_docs + positive_docs 

The next step is to encode each document as a sequence of integers. 

The Keras Embedding layer requires integer inputs where each integer maps to a single 

token that has a specific real-valued vector representation within the embedding. These 

vectors are random at the beginning of training, but during training become meaningful to 

the network. 

We can encode the training documents as sequences of integers using the Tokenizer class 

in the Keras API. 
First, we must construct an instance of the class then train it on all documents in the training 
dataset. In this case, it develops a vocabulary of all tokens in the training dataset and 
develops a consistent mapping from words in the vocabulary to unique integers. We could 
just as easily develop this mapping ourselves using our vocabulary file.  
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# create the tokenizer 
tokenizer = Tokenizer() 
# fit the tokenizer on the documents 
tokenizer.fit_on_texts(train_docs) 

Now that the mapping of words to integers has been prepared, we can use it to encode the 
reviews in the training dataset. We can do that by calling the texts_to_sequences() function 
on the Tokenizer.  
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# sequence encode 
encoded_docs = tokenizer.texts_to_sequences(train_docs) 

We also need to ensure that all documents have the same length. 

This is a requirement of Keras for efficient computation. We could truncate reviews to the 

smallest size or zero-pad (pad with the value ‘0’) reviews to the maximum length, or some 

hybrid. In this case, we will pad all reviews to the length of the longest review in the training 

dataset. 

https://keras.io/preprocessing/text/#tokenizer


First, we can find the longest review using the max() function on the training dataset and 
take its length. We can then call the Keras function pad_sequences() to pad the sequences 
to the maximum length by adding 0 values on the end.  
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# pad sequences 
max_length = max([len(s.split()) for s in train_docs]) 
Xtrain = pad_sequences(encoded_docs, maxlen=max_length, padding='post') 

Finally, we can define the class labels for the training dataset, needed to fit the supervised 
neural network model to predict the sentiment of reviews.  
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# define training labels 
ytrain = array([0 for _ in range(900)] + [1 for _ in range(900)]) 

We can then encode and pad the test dataset, needed later to evaluate the model after we 
train it.  
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# load all test reviews 
positive_docs = process_docs('txt_sentoken/pos', vocab, False) 
negative_docs = process_docs('txt_sentoken/neg', vocab, False) 
test_docs = negative_docs + positive_docs 
# sequence encode 
encoded_docs = tokenizer.texts_to_sequences(test_docs) 
# pad sequences 
Xtest = pad_sequences(encoded_docs, maxlen=max_length, padding='post') 
# define test labels 
ytest = array([0 for _ in range(100)] + [1 for _ in range(100)]) 

We are now ready to define our neural network model. 

The model will use an Embedding layer as the first hidden layer. The Embedding requires 

the specification of the vocabulary size, the size of the real-valued vector space, and the 

maximum length of input documents. 

The vocabulary size is the total number of words in our vocabulary, plus one for unknown 
words. This could be the vocab set length or the size of the vocab within the tokenizer used 
to integer encode the documents, for example:  
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# define vocabulary size (largest integer value) 
vocab_size = len(tokenizer.word_index) + 1 

We will use a 100-dimensional vector space, but you could try other values, such as 50 or 

150. Finally, the maximum document length was calculated above in 

the max_length variable used during padding. 

The complete model definition is listed below including the Embedding layer. 

We use a Convolutional Neural Network (CNN) as they have proven to be successful at 

document classification problems. A conservative CNN configuration is used with 32 filters 

(parallel fields for processing words) and a kernel size of 8 with a rectified linear (‘relu’) 

activation function. This is followed by a pooling layer that reduces the output of the 

convolutional layer by half. 

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/


Next, the 2D output from the CNN part of the model is flattened to one long 2D vector to 

represent the ‘features’ extracted by the CNN. The back-end of the model is a standard 

Multilayer Perceptron layers to interpret the CNN features. The output layer uses a sigmoid 

activation function to output a value between 0 and 1 for the negative and positive 

sentiment in the review. 

For more advice on effective deep learning model configuration for text classification, see 

the post: 

Best Practices for Document Classification with Deep Learning 
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# define model 
model = Sequential() 
model.add(Embedding(vocab_size, 100, input_length=max_length)) 
model.add(Conv1D(filters=32, kernel_size=8, activation='relu')) 
model.add(MaxPooling1D(pool_size=2)) 
model.add(Flatten()) 
model.add(Dense(10, activation='relu')) 
model.add(Dense(1, activation='sigmoid')) 
print(model.summary()) 

Running just this piece provides a summary of the defined network. 

We can see that the Embedding layer expects documents with a length of 442 words as 
input and encodes each word in the document as a 100 element vector.  
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_________________________________________________________________ 
Layer (type)                 Output Shape              Param # 
================================================================= 
embedding_1 (Embedding)      (None, 442, 100)          2576800 
_________________________________________________________________ 
conv1d_1 (Conv1D)            (None, 435, 32)           25632 
_________________________________________________________________ 
max_pooling1d_1 (MaxPooling1 (None, 217, 32)           0 
_________________________________________________________________ 
flatten_1 (Flatten)          (None, 6944)              0 
_________________________________________________________________ 
dense_1 (Dense)              (None, 10)                69450 
_________________________________________________________________ 
dense_2 (Dense)              (None, 1)                 11 
================================================================= 
Total params: 2,671,893 
Trainable params: 2,671,893 
Non-trainable params: 0 
_________________________________________________________________ 

Next, we fit the network on the training data. 

We use a binary cross entropy loss function because the problem we are learning is a 

binary classification problem. The efficient Adam implementation of stochastic gradient 

https://machinelearningmastery.com/best-practices-document-classification-deep-learning/


descent is used and we keep track of accuracy in addition to loss during training. The model 

is trained for 10 epochs, or 10 passes through the training data. 

The network configuration and training schedule were found with a little trial and error, but 
are by no means optimal for this problem. If you can get better results with a different 
configuration, let me know.  
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# compile network 
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 
# fit network 
model.fit(Xtrain, ytrain, epochs=10, verbose=2) 

After the model is fit, it is evaluated on the test dataset. This dataset contains words that we 
have not seen before and reviews not seen during training.  
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# evaluate 
loss, acc = model.evaluate(Xtest, ytest, verbose=0) 
print('Test Accuracy: %f' % (acc*100)) 

We can tie all of this together. 

The complete code listing is provided below.  
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from string import punctuation 
from os import listdir 
from numpy import array 
from keras.preprocessing.text import Tokenizer 
from keras.preprocessing.sequence import pad_sequences 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.layers import Embedding 
from keras.layers.convolutional import Conv1D 
from keras.layers.convolutional import MaxPooling1D 
  
# load doc into memory 
def load_doc(filename): 
 # open the file as read only 
 file = open(filename, 'r') 
 # read all text 
 text = file.read() 
 # close the file 
 file.close() 
 return text 
  
# turn a doc into clean tokens 
def clean_doc(doc, vocab): 
 # split into tokens by white space 
 tokens = doc.split() 
 # remove punctuation from each token 
 table = str.maketrans('', '', punctuation) 
 tokens = [w.translate(table) for w in tokens] 
 # filter out tokens not in vocab 
 tokens = [w for w in tokens if w in vocab] 
 tokens = ' '.join(tokens) 
 return tokens 
  
# load all docs in a directory 
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def process_docs(directory, vocab, is_trian): 
 documents = list() 
 # walk through all files in the folder 
 for filename in listdir(directory): 
  # skip any reviews in the test set 
  if is_trian and filename.startswith('cv9'): 
   continue 
  if not is_trian and not filename.startswith('cv9'): 
   continue 
  # create the full path of the file to open 
  path = directory + '/' + filename 
  # load the doc 
  doc = load_doc(path) 
  # clean doc 
  tokens = clean_doc(doc, vocab) 
  # add to list 
  documents.append(tokens) 
 return documents 
  
# load the vocabulary 
vocab_filename = 'vocab.txt' 
vocab = load_doc(vocab_filename) 
vocab = vocab.split() 
vocab = set(vocab) 
  
# load all training reviews 
positive_docs = process_docs('txt_sentoken/pos', vocab, True) 
negative_docs = process_docs('txt_sentoken/neg', vocab, True) 
train_docs = negative_docs + positive_docs 
  
# create the tokenizer 
tokenizer = Tokenizer() 
# fit the tokenizer on the documents 
tokenizer.fit_on_texts(train_docs) 
  
# sequence encode 
encoded_docs = tokenizer.texts_to_sequences(train_docs) 
# pad sequences 
max_length = max([len(s.split()) for s in train_docs]) 
Xtrain = pad_sequences(encoded_docs, maxlen=max_length, padding='post') 
# define training labels 
ytrain = array([0 for _ in range(900)] + [1 for _ in range(900)]) 
  
# load all test reviews 
positive_docs = process_docs('txt_sentoken/pos', vocab, False) 
negative_docs = process_docs('txt_sentoken/neg', vocab, False) 
test_docs = negative_docs + positive_docs 
# sequence encode 
encoded_docs = tokenizer.texts_to_sequences(test_docs) 
# pad sequences 
Xtest = pad_sequences(encoded_docs, maxlen=max_length, padding='post') 
# define test labels 
ytest = array([0 for _ in range(100)] + [1 for _ in range(100)]) 
  
# define vocabulary size (largest integer value) 
vocab_size = len(tokenizer.word_index) + 1 
  
# define model 
model = Sequential() 
model.add(Embedding(vocab_size, 100, input_length=max_length)) 
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model.add(Conv1D(filters=32, kernel_size=8, activation='relu')) 
model.add(MaxPooling1D(pool_size=2)) 
model.add(Flatten()) 
model.add(Dense(10, activation='relu')) 
model.add(Dense(1, activation='sigmoid')) 
print(model.summary()) 
# compile network 
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 
# fit network 
model.fit(Xtrain, ytrain, epochs=10, verbose=2) 
# evaluate 
loss, acc = model.evaluate(Xtest, ytest, verbose=0) 
print('Test Accuracy: %f' % (acc*100)) 

Running the example prints the loss and accuracy at the end of each training epoch. We 

can see that the model very quickly achieves 100% accuracy on the training dataset. 

At the end of the run, the model achieves an accuracy of 84.5% on the test dataset, which 

is a great score. 

Given the stochastic nature of neural networks, your specific results will vary. Consider 
running the example a few times and taking the average score as the skill of the model.  
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... 
Epoch 6/10 
2s - loss: 0.0013 - acc: 1.0000 
Epoch 7/10 
2s - loss: 8.4573e-04 - acc: 1.0000 
Epoch 8/10 
2s - loss: 5.8323e-04 - acc: 1.0000 
Epoch 9/10 
2s - loss: 4.3155e-04 - acc: 1.0000 
Epoch 10/10 
2s - loss: 3.3083e-04 - acc: 1.0000 
Test Accuracy: 84.500000 

We have just seen an example of how we can learn a word embedding as part of fitting a 

neural network model. 

Next, let’s look at how we can efficiently learn a standalone embedding that we could later 

use in our neural network. 

4. Train word2vec Embedding 

In this section, we will discover how to learn a standalone word embedding using an 

efficient algorithm called word2vec. 

A downside of learning a word embedding as part of the network is that it can be very slow, 

especially for very large text datasets. 



The word2vec algorithm is an approach to learning a word embedding from a text corpus in 

a standalone way. The benefit of the method is that it can produce high-quality word 

embeddings very efficiently, in terms of space and time complexity. 

The first step is to prepare the documents ready for learning the embedding. 

This involves the same data cleaning steps from the previous section, namely splitting 

documents by their white space, removing punctuation, and filtering out tokens not in the 

vocabulary. 

The word2vec algorithm processes documents sentence by sentence. This means we will 

preserve the sentence-based structure during cleaning. 

We start by loading the vocabulary, as before.  
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# load doc into memory 
def load_doc(filename): 
 # open the file as read only 
 file = open(filename, 'r') 
 # read all text 
 text = file.read() 
 # close the file 
 file.close() 
 return text 
  
# load the vocabulary 
vocab_filename = 'vocab.txt' 
vocab = load_doc(vocab_filename) 
vocab = vocab.split() 
vocab = set(vocab) 

Next, we define a function named doc_to_clean_lines() to clean a loaded document line by 
line and return a list of the cleaned lines.  
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# turn a doc into clean tokens 
def doc_to_clean_lines(doc, vocab): 
 clean_lines = list() 
 lines = doc.splitlines() 
 for line in lines: 
  # split into tokens by white space 
  tokens = line.split() 
  # remove punctuation from each token 
  table = str.maketrans('', '', punctuation) 
  tokens = [w.translate(table) for w in tokens] 
  # filter out tokens not in vocab 
  tokens = [w for w in tokens if w in vocab] 
  clean_lines.append(tokens) 
 return clean_lines 

Next, we adapt the process_docs() function to load and clean all of the documents in a 

folder and return a list of all document lines. 



The results from this function will be the training data for the word2vec model.  
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# load all docs in a directory 
def process_docs(directory, vocab, is_trian): 
 lines = list() 
 # walk through all files in the folder 
 for filename in listdir(directory): 
  # skip any reviews in the test set 
  if is_trian and filename.startswith('cv9'): 
   continue 
  if not is_trian and not filename.startswith('cv9'): 
   continue 
  # create the full path of the file to open 
  path = directory + '/' + filename 
  # load and clean the doc 
  doc = load_doc(path) 
  doc_lines = doc_to_clean_lines(doc, vocab) 
  # add lines to list 
  lines += doc_lines 
 return lines 

We can then load all of the training data and convert it into a long list of ‘sentences’ (lists of 
tokens) ready for fitting the word2vec model.  
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# load training data 
positive_lines = process_docs('txt_sentoken/pos', vocab, True) 
negative_lines = process_docs('txt_sentoken/neg', vocab, True) 
sentences = negative_docs + positive_docs 
print('Total training sentences: %d' % len(sentences)) 

We will use the word2vec implementation provided in the Gensim Python library. 

Specifically the Word2Vec class. 

For more on training a standalone word embedding with Gensim, see the post: 

• How to Develop Word Embeddings in Python with Gensim 

The model is fit when constructing the class. We pass in the list of clean sentences from the 

training data, then specify the size of the embedding vector space (we use 100 again), the 

number of neighboring words to look at when learning how to embed each word in the 

training sentences (we use 5 neighbors), the number of threads to use when fitting the 

model (we use 8, but change this if you have more or less CPU cores), and the minimum 

occurrence count for words to consider in the vocabulary (we set this to 1 as we have 

already prepared the vocabulary). 

After the model is fit, we print the size of the learned vocabulary, which should match the 
size of our vocabulary in vocab.txt of 25,767 tokens.  
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# train word2vec model 
model = Word2Vec(sentences, size=100, window=5, workers=8, min_count=1) 
# summarize vocabulary size in model 
words = list(model.wv.vocab) 
print('Vocabulary size: %d' % len(words)) 

https://radimrehurek.com/gensim/models/word2vec.html
https://machinelearningmastery.com/develop-word-embeddings-python-gensim/


Finally, we save the learned embedding vectors to file using 

the save_word2vec_format() on the model’s ‘wv‘ (word vector) attribute. The embedding is 

saved in ASCII format with one word and vector per line. 
The complete example is listed below.  
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from string import punctuation 
from os import listdir 
from gensim.models import Word2Vec 
  
# load doc into memory 
def load_doc(filename): 
 # open the file as read only 
 file = open(filename, 'r') 
 # read all text 
 text = file.read() 
 # close the file 
 file.close() 
 return text 
  
# turn a doc into clean tokens 
def doc_to_clean_lines(doc, vocab): 
 clean_lines = list() 
 lines = doc.splitlines() 
 for line in lines: 
  # split into tokens by white space 
  tokens = line.split() 
  # remove punctuation from each token 
  table = str.maketrans('', '', punctuation) 
  tokens = [w.translate(table) for w in tokens] 
  # filter out tokens not in vocab 
  tokens = [w for w in tokens if w in vocab] 
  clean_lines.append(tokens) 
 return clean_lines 
  
# load all docs in a directory 
def process_docs(directory, vocab, is_trian): 
 lines = list() 
 # walk through all files in the folder 
 for filename in listdir(directory): 
  # skip any reviews in the test set 
  if is_trian and filename.startswith('cv9'): 
   continue 
  if not is_trian and not filename.startswith('cv9'): 
   continue 
  # create the full path of the file to open 
  path = directory + '/' + filename 
  # load and clean the doc 
  doc = load_doc(path) 
  doc_lines = doc_to_clean_lines(doc, vocab) 
  # add lines to list 
  lines += doc_lines 
 return lines 
  
# load the vocabulary 
vocab_filename = 'vocab.txt' 
vocab = load_doc(vocab_filename) 
vocab = vocab.split() 
vocab = set(vocab) 

https://radimrehurek.com/gensim/models/keyedvectors.html
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# load training data 
positive_lines = process_docs('txt_sentoken/pos', vocab, True) 
negative_lines = process_docs('txt_sentoken/neg', vocab, True) 
sentences = negative_docs + positive_docs 
print('Total training sentences: %d' % len(sentences)) 
  
# train word2vec model 
model = Word2Vec(sentences, size=100, window=5, workers=8, min_count=1) 
# summarize vocabulary size in model 
words = list(model.wv.vocab) 
print('Vocabulary size: %d' % len(words)) 
  
# save model in ASCII (word2vec) format 
filename = 'embedding_word2vec.txt' 
model.wv.save_word2vec_format(filename, binary=False) 

Running the example loads 58,109 sentences from the training data and creates an 

embedding for a vocabulary of 25,767 words. 

You should now have a file ’embedding_word2vec.txt’ with the learned vectors in your 
current working directory.  
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Total training sentences: 58109 
Vocabulary size: 25767 

Next, let’s look at using these learned vectors in our model. 

5. Use Pre-trained Embedding 

In this section, we will use a pre-trained word embedding prepared on a very large text 

corpus. 

We can use the pre-trained word embedding developed in the previous section and the 

CNN model developed in the section before that. 

The first step is to load the word embedding as a directory of words to vectors. The word 

embedding was saved in so-called ‘word2vec‘ format that contains a header line. We will 

skip this header line when loading the embedding. 
The function below named load_embedding() loads the embedding and returns a directory 
of words mapped to the vectors in NumPy format.  
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# load embedding as a dict 
def load_embedding(filename): 
 # load embedding into memory, skip first line 
 file = open(filename,'r') 
 lines = file.readlines()[1:] 
 file.close() 
 # create a map of words to vectors 
 embedding = dict() 
 for line in lines: 
  parts = line.split() 
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  # key is string word, value is numpy array for vector 
  embedding[parts[0]] = asarray(parts[1:], dtype='float32') 
 return embedding 

Now that we have all of the vectors in memory, we can order them in such a way as to 

match the integer encoding prepared by the Keras Tokenizer. 

Recall that we integer encode the review documents prior to passing them to the 

Embedding layer. The integer maps to the index of a specific vector in the embedding layer. 

Therefore, it is important that we lay the vectors out in the Embedding layer such that the 

encoded words map to the correct vector. 

Below defines a function get_weight_matrix() that takes the loaded embedding and the 
tokenizer.word_index vocabulary as arguments and returns a matrix with the word vectors 
in the correct locations.  
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# create a weight matrix for the Embedding layer from a loaded embedding 
def get_weight_matrix(embedding, vocab): 
 # total vocabulary size plus 0 for unknown words 
 vocab_size = len(vocab) + 1 
 # define weight matrix dimensions with all 0 
 weight_matrix = zeros((vocab_size, 100)) 
 # step vocab, store vectors using the Tokenizer's integer mapping 
 for word, i in vocab.items(): 
  weight_matrix[i] = embedding.get(word) 
 return weight_matrix 

Now we can use these functions to create our new Embedding layer for our model.  
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... 
# load embedding from file 
raw_embedding = load_embedding('embedding_word2vec.txt') 
# get vectors in the right order 
embedding_vectors = get_weight_matrix(raw_embedding, tokenizer.word_index) 
# create the embedding layer 
embedding_layer = Embedding(vocab_size, 100, weights=[embedding_vectors], input_length=max_length, 
trainable=False) 

Note that the prepared weight matrix embedding_vectors is passed to the new Embedding 

layer as an argument and that we set the ‘trainable‘ argument to ‘False‘ to ensure that the 

network does not try to adapt the pre-learned vectors as part of training the network. 
We can now add this layer to our model. We also have a slightly different model 
configuration with a lot more filters (128) in the CNN model and a kernel that matches the 5 
words used as neighbors when developing the word2vec embedding. Finally, the back-end 
of the model was simplified.  
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# define model 
model = Sequential() 
model.add(embedding_layer) 
model.add(Conv1D(filters=128, kernel_size=5, activation='relu')) 
model.add(MaxPooling1D(pool_size=2)) 
model.add(Flatten()) 
model.add(Dense(1, activation='sigmoid')) 
print(model.summary()) 



These changes were found with a little trial and error. 

The complete code listing is provided below.  
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from string import punctuation 
from os import listdir 
from numpy import array 
from numpy import asarray 
from numpy import zeros 
from keras.preprocessing.text import Tokenizer 
from keras.preprocessing.sequence import pad_sequences 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.layers import Embedding 
from keras.layers.convolutional import Conv1D 
from keras.layers.convolutional import MaxPooling1D 
  
# load doc into memory 
def load_doc(filename): 
 # open the file as read only 
 file = open(filename, 'r') 
 # read all text 
 text = file.read() 
 # close the file 
 file.close() 
 return text 
  
# turn a doc into clean tokens 
def clean_doc(doc, vocab): 
 # split into tokens by white space 
 tokens = doc.split() 
 # remove punctuation from each token 
 table = str.maketrans('', '', punctuation) 
 tokens = [w.translate(table) for w in tokens] 
 # filter out tokens not in vocab 
 tokens = [w for w in tokens if w in vocab] 
 tokens = ' '.join(tokens) 
 return tokens 
  
# load all docs in a directory 
def process_docs(directory, vocab, is_trian): 
 documents = list() 
 # walk through all files in the folder 
 for filename in listdir(directory): 
  # skip any reviews in the test set 
  if is_trian and filename.startswith('cv9'): 
   continue 
  if not is_trian and not filename.startswith('cv9'): 
   continue 
  # create the full path of the file to open 
  path = directory + '/' + filename 
  # load the doc 
  doc = load_doc(path) 
  # clean doc 
  tokens = clean_doc(doc, vocab) 
  # add to list 
  documents.append(tokens) 
 return documents 
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# load embedding as a dict 
def load_embedding(filename): 
 # load embedding into memory, skip first line 
 file = open(filename,'r') 
 lines = file.readlines()[1:] 
 file.close() 
 # create a map of words to vectors 
 embedding = dict() 
 for line in lines: 
  parts = line.split() 
  # key is string word, value is numpy array for vector 
  embedding[parts[0]] = asarray(parts[1:], dtype='float32') 
 return embedding 
  
# create a weight matrix for the Embedding layer from a loaded embedding 
def get_weight_matrix(embedding, vocab): 
 # total vocabulary size plus 0 for unknown words 
 vocab_size = len(vocab) + 1 
 # define weight matrix dimensions with all 0 
 weight_matrix = zeros((vocab_size, 100)) 
 # step vocab, store vectors using the Tokenizer's integer mapping 
 for word, i in vocab.items(): 
  weight_matrix[i] = embedding.get(word) 
 return weight_matrix 
  
# load the vocabulary 
vocab_filename = 'vocab.txt' 
vocab = load_doc(vocab_filename) 
vocab = vocab.split() 
vocab = set(vocab) 
  
# load all training reviews 
positive_docs = process_docs('txt_sentoken/pos', vocab, True) 
negative_docs = process_docs('txt_sentoken/neg', vocab, True) 
train_docs = negative_docs + positive_docs 
  
# create the tokenizer 
tokenizer = Tokenizer() 
# fit the tokenizer on the documents 
tokenizer.fit_on_texts(train_docs) 
  
# sequence encode 
encoded_docs = tokenizer.texts_to_sequences(train_docs) 
# pad sequences 
max_length = max([len(s.split()) for s in train_docs]) 
Xtrain = pad_sequences(encoded_docs, maxlen=max_length, padding='post') 
# define training labels 
ytrain = array([0 for _ in range(900)] + [1 for _ in range(900)]) 
  
# load all test reviews 
positive_docs = process_docs('txt_sentoken/pos', vocab, False) 
negative_docs = process_docs('txt_sentoken/neg', vocab, False) 
test_docs = negative_docs + positive_docs 
# sequence encode 
encoded_docs = tokenizer.texts_to_sequences(test_docs) 
# pad sequences 
Xtest = pad_sequences(encoded_docs, maxlen=max_length, padding='post') 
# define test labels 
ytest = array([0 for _ in range(100)] + [1 for _ in range(100)]) 
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# define vocabulary size (largest integer value) 
vocab_size = len(tokenizer.word_index) + 1 
  
# load embedding from file 
raw_embedding = load_embedding('embedding_word2vec.txt') 
# get vectors in the right order 
embedding_vectors = get_weight_matrix(raw_embedding, tokenizer.word_index) 
# create the embedding layer 
embedding_layer = Embedding(vocab_size, 100, weights=[embedding_vectors], input_length=max_length, 
trainable=False) 
  
# define model 
model = Sequential() 
model.add(embedding_layer) 
model.add(Conv1D(filters=128, kernel_size=5, activation='relu')) 
model.add(MaxPooling1D(pool_size=2)) 
model.add(Flatten()) 
model.add(Dense(1, activation='sigmoid')) 
print(model.summary()) 
# compile network 
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 
# fit network 
model.fit(Xtrain, ytrain, epochs=10, verbose=2) 
# evaluate 
loss, acc = model.evaluate(Xtest, ytest, verbose=0) 
print('Test Accuracy: %f' % (acc*100)) 

Running the example shows that performance was not improved. 

In fact, performance was a lot worse. The results show that the training dataset was learned 

successfully, but evaluation on the test dataset was very poor, at just above 50% accuracy. 

The cause of the poor test performance may be because of the chosen word2vec 
configuration or the chosen neural network configuration.  
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... 
Epoch 6/10 
2s - loss: 0.3306 - acc: 0.8778 
Epoch 7/10 
2s - loss: 0.2888 - acc: 0.8917 
Epoch 8/10 
2s - loss: 0.1878 - acc: 0.9439 
Epoch 9/10 
2s - loss: 0.1255 - acc: 0.9750 
Epoch 10/10 
2s - loss: 0.0812 - acc: 0.9928 
Test Accuracy: 53.000000 

The weights in the embedding layer can be used as a starting point for the network, and 

adapted during the training of the network. We can do this by setting ‘trainable=True‘ (the 

default) in the creation of the embedding layer. 

Repeating the experiment with this change shows slightly better results, but still poor. 



I would encourage you to explore alternate configurations of the embedding and network to 
see if you can do better. Let me know how you do.  
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... 
Epoch 6/10 
4s - loss: 0.0950 - acc: 0.9917 
Epoch 7/10 
4s - loss: 0.0355 - acc: 0.9983 
Epoch 8/10 
4s - loss: 0.0158 - acc: 1.0000 
Epoch 9/10 
4s - loss: 0.0080 - acc: 1.0000 
Epoch 10/10 
4s - loss: 0.0050 - acc: 1.0000 
Test Accuracy: 57.500000 

It is possible to use pre-trained word vectors prepared on very large corpora of text data. 

For example, both Google and Stanford provide pre-trained word vectors that you can 

download, trained with the efficient word2vec and GloVe methods respectively. 

Let’s try to use pre-trained vectors in our model. 

You can download pre-trained GloVe vectors from the Stanford webpage. Specifically, 

vectors trained on Wikipedia data: 
• glove.6B.zip (822 Megabyte download) 

Unzipping the file, you will find pre-trained embeddings for various different dimensions. We 

will load the 100 dimension version in the file ‘glove.6B.100d.txt‘ 
The Glove file does not contain a header file, so we do not need to skip the first line when 
loading the embedding into memory. The updated load_embedding() function is listed 
below.  
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# load embedding as a dict 
def load_embedding(filename): 
 # load embedding into memory, skip first line 
 file = open(filename,'r') 
 lines = file.readlines() 
 file.close() 
 # create a map of words to vectors 
 embedding = dict() 
 for line in lines: 
  parts = line.split() 
  # key is string word, value is numpy array for vector 
  embedding[parts[0]] = asarray(parts[1:], dtype='float32') 
 return embedding 

It is possible that the loaded embedding does not contain all of the words in our chosen 
vocabulary. As such, when creating the Embedding weight matrix, we need to skip words 
that do not have a corresponding vector in the loaded GloVe data. Below is the updated, 
more defensive version of the get_weight_matrix() function.  

1 
2 

# create a weight matrix for the Embedding layer from a loaded embedding 
def get_weight_matrix(embedding, vocab): 

https://nlp.stanford.edu/projects/glove/
http://nlp.stanford.edu/data/glove.6B.zip
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 # total vocabulary size plus 0 for unknown words 
 vocab_size = len(vocab) + 1 
 # define weight matrix dimensions with all 0 
 weight_matrix = zeros((vocab_size, 100)) 
 # step vocab, store vectors using the Tokenizer's integer mapping 
 for word, i in vocab.items(): 
  vector = embedding.get(word) 
  if vector is not None: 
   weight_matrix[i] = vector 
 return weight_matrix 

We can now load the GloVe embedding and create the Embedding layer as before.  

1 
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5 
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# load embedding from file 
raw_embedding = load_embedding('glove.6B.100d.txt') 
# get vectors in the right order 
embedding_vectors = get_weight_matrix(raw_embedding, tokenizer.word_index) 
# create the embedding layer 
embedding_layer = Embedding(vocab_size, 100, weights=[embedding_vectors], input_length=max_length, 
trainable=False) 

We will use the same model as before. 

The complete example is listed below.  
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from string import punctuation 
from os import listdir 
from numpy import array 
from numpy import asarray 
from numpy import zeros 
from keras.preprocessing.text import Tokenizer 
from keras.preprocessing.sequence import pad_sequences 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.layers import Embedding 
from keras.layers.convolutional import Conv1D 
from keras.layers.convolutional import MaxPooling1D 
  
# load doc into memory 
def load_doc(filename): 
 # open the file as read only 
 file = open(filename, 'r') 
 # read all text 
 text = file.read() 
 # close the file 
 file.close() 
 return text 
  
# turn a doc into clean tokens 
def clean_doc(doc, vocab): 
 # split into tokens by white space 
 tokens = doc.split() 
 # remove punctuation from each token 
 table = str.maketrans('', '', punctuation) 
 tokens = [w.translate(table) for w in tokens] 
 # filter out tokens not in vocab 
 tokens = [w for w in tokens if w in vocab] 
 tokens = ' '.join(tokens) 
 return tokens 
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# load all docs in a directory 
def process_docs(directory, vocab, is_trian): 
 documents = list() 
 # walk through all files in the folder 
 for filename in listdir(directory): 
  # skip any reviews in the test set 
  if is_trian and filename.startswith('cv9'): 
   continue 
  if not is_trian and not filename.startswith('cv9'): 
   continue 
  # create the full path of the file to open 
  path = directory + '/' + filename 
  # load the doc 
  doc = load_doc(path) 
  # clean doc 
  tokens = clean_doc(doc, vocab) 
  # add to list 
  documents.append(tokens) 
 return documents 
  
# load embedding as a dict 
def load_embedding(filename): 
 # load embedding into memory, skip first line 
 file = open(filename,'r') 
 lines = file.readlines() 
 file.close() 
 # create a map of words to vectors 
 embedding = dict() 
 for line in lines: 
  parts = line.split() 
  # key is string word, value is numpy array for vector 
  embedding[parts[0]] = asarray(parts[1:], dtype='float32') 
 return embedding 
  
# create a weight matrix for the Embedding layer from a loaded embedding 
def get_weight_matrix(embedding, vocab): 
 # total vocabulary size plus 0 for unknown words 
 vocab_size = len(vocab) + 1 
 # define weight matrix dimensions with all 0 
 weight_matrix = zeros((vocab_size, 100)) 
 # step vocab, store vectors using the Tokenizer's integer mapping 
 for word, i in vocab.items(): 
  vector = embedding.get(word) 
  if vector is not None: 
   weight_matrix[i] = vector 
 return weight_matrix 
  
# load the vocabulary 
vocab_filename = 'vocab.txt' 
vocab = load_doc(vocab_filename) 
vocab = vocab.split() 
vocab = set(vocab) 
  
# load all training reviews 
positive_docs = process_docs('txt_sentoken/pos', vocab, True) 
negative_docs = process_docs('txt_sentoken/neg', vocab, True) 
train_docs = negative_docs + positive_docs 
  
# create the tokenizer 
tokenizer = Tokenizer() 
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# fit the tokenizer on the documents 
tokenizer.fit_on_texts(train_docs) 
  
# sequence encode 
encoded_docs = tokenizer.texts_to_sequences(train_docs) 
# pad sequences 
max_length = max([len(s.split()) for s in train_docs]) 
Xtrain = pad_sequences(encoded_docs, maxlen=max_length, padding='post') 
# define training labels 
ytrain = array([0 for _ in range(900)] + [1 for _ in range(900)]) 
  
# load all test reviews 
positive_docs = process_docs('txt_sentoken/pos', vocab, False) 
negative_docs = process_docs('txt_sentoken/neg', vocab, False) 
test_docs = negative_docs + positive_docs 
# sequence encode 
encoded_docs = tokenizer.texts_to_sequences(test_docs) 
# pad sequences 
Xtest = pad_sequences(encoded_docs, maxlen=max_length, padding='post') 
# define test labels 
ytest = array([0 for _ in range(100)] + [1 for _ in range(100)]) 
  
# define vocabulary size (largest integer value) 
vocab_size = len(tokenizer.word_index) + 1 
  
# load embedding from file 
raw_embedding = load_embedding('glove.6B.100d.txt') 
# get vectors in the right order 
embedding_vectors = get_weight_matrix(raw_embedding, tokenizer.word_index) 
# create the embedding layer 
embedding_layer = Embedding(vocab_size, 100, weights=[embedding_vectors], input_length=max_length, 
trainable=False) 
  
# define model 
model = Sequential() 
model.add(embedding_layer) 
model.add(Conv1D(filters=128, kernel_size=5, activation='relu')) 
model.add(MaxPooling1D(pool_size=2)) 
model.add(Flatten()) 
model.add(Dense(1, activation='sigmoid')) 
print(model.summary()) 
# compile network 
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 
# fit network 
model.fit(Xtrain, ytrain, epochs=10, verbose=2) 
# evaluate 
loss, acc = model.evaluate(Xtest, ytest, verbose=0) 
print('Test Accuracy: %f' % (acc*100)) 

Running the example shows better performance. 

Again, the training dataset is easily learned and the model achieves 76% accuracy on the 

test dataset. This is good, but not as good as using a learned Embedding layer. 

This may be cause of the higher quality vectors trained on more data and/or using a slightly 

different training process. 



Your specific results may vary given the stochastic nature of neural networks. Try running 
the example a few times.  
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... 
Epoch 6/10 
2s - loss: 0.0278 - acc: 1.0000 
Epoch 7/10 
2s - loss: 0.0174 - acc: 1.0000 
Epoch 8/10 
2s - loss: 0.0117 - acc: 1.0000 
Epoch 9/10 
2s - loss: 0.0086 - acc: 1.0000 
Epoch 10/10 
2s - loss: 0.0068 - acc: 1.0000 
Test Accuracy: 76.000000 

In this case, it seems that learning the embedding as part of the learning task may be a 

better direction than using a specifically trained embedding or a more general pre-trained 

embedding. 

Further Reading 

This section provides more resources on the topic if you are looking go deeper. 

Dataset 

• Movie Review Data 

• A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum 

Cuts, 2004. 

• Movie Review Polarity Dataset (.tgz) 

• Dataset Readme v2.0 and v1.1. 

APIs 

• collections API – Container datatypes 

• Tokenizer Keras API 

• Embedding Keras API 

• Gensim Word2Vec API 

• Gensim WordVector API 

Embedding Methods 

• word2vec on Google Code 

• GloVe on Stanford 

Related Posts 

• Using pre-trained word embeddings in a Keras model, 2016. 

• Implementing a CNN for Text Classification in TensorFlow, 2015. 

Summary 

In this tutorial, you discovered how to develop word embeddings for the classification of 

movie reviews. 

http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://xxx.lanl.gov/abs/cs/0409058
http://xxx.lanl.gov/abs/cs/0409058
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/poldata.README.2.0.txt
http://www.cs.cornell.edu/people/pabo/movie-review-data/README.1.1
https://docs.python.org/3/library/collections.html
https://keras.io/preprocessing/text/#tokenizer
https://keras.io/layers/embeddings/
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/keyedvectors.html
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/


Specifically, you learned: 

• How to prepare movie review text data for classification with deep learning methods. 

• How to learn a word embedding as part of fitting a deep learning model. 

• How to learn a standalone word embedding and how to use a pre-trained embedding in a neural 

network model. 

Do you have any questions? 

Ask your questions in the comments below and I will do my best to answer. 

Note: This post is an excerpt chapter from: “Deep Learning for Natural Language 

Processing“. Take a look, if you want more step-by-step tutorials on getting the most out of 

deep learning methods when working with text data. 
 

https://machinelearningmastery.com/deep-learning-for-nlp/
https://machinelearningmastery.com/deep-learning-for-nlp/

